乔雄,刘文高,倪伟淋,等.基于爆破荷载等效施加方法的振动波形预测与古建筑安全评估[J].地震工程学报,2024,46(1):16-25.DOI:10.20000/j.1000-0844.20211231001

QIAO Xiong,LIU Wengao,NI Weilin, et al. Prediction of vibration waveform and a safety assessment of ancient buildings based on the equivalent simulation method of blasting load[J]. China Earthquake Engineering Journal, 2024, 46(1):16-25. DOI:10. 20000/j.1000-0844.20211231001

基于爆破荷载等效施加方法的振动 波形预测与古建筑安全评估

乔 雄1, 刘文高1, 倪伟淋1, 张 伟2, 杨 鑫1, 黄锦聪1, 刘锦龙1

(1. 兰州理工大学 土木工程学院, 甘肃 兰州 730050; 2. 甘肃路桥建设集团有限公司, 甘肃 兰州 730050)

摘要:隧道爆破开挖产生的振动对邻近的古建筑有着不容忽视的安全影响,为研究爆破振动波的传播规律以及预测地面振动效应和分析临近古建筑结构的安全性,以拉卜楞隧道为依托,采用现场实测结合数值模拟分析的方法,预测爆破荷载作用下拉卜楞寺的动力响应。结果表明:(1)随着单响总药量的增加,质点振动速度增大,衰减比也随之增大,说明高频振动衰减快,低频振动衰减侵; (2)通过理论计算将爆破荷载等效施加在弹性边界或隧道开挖轮廓面上,动力模拟结果表明在大于 40 m 的中远区两者振速变化规律趋于一致,故将荷载施加在开挖轮廓面上是合理的;(3)爆破地震 波自由界面处体波经过反射形成沿表面传播的 Rayleigh 波,结合数值模拟山体内部地震波的传播 规律发现,经反射叠加山体内部形成复杂的振动区;(4)当地震波到达拉卜楞寺最近点时,径向振速 峰值为 0.000 672 cm/s,垂向振速峰值为 0.000 448 cm/s,合成振速峰值为 0.000 807 cm/s,远小于 古建筑安全振动控制标准。

关键词:爆破振动;等效荷载;数值模拟;爆破地震波;安全评价
 中图分类号:TU435
 文献标志码:A
 文章编号:1000-0844(2024)01-0016-10
 DOI:10.20000/j.1000-0844.20211231001

Prediction of vibration waveform and a safety assessment of ancient buildings based on the equivalent simulation method of blasting load

QIAO Xiong¹, LIU Wengao¹, NI Weilin¹, ZHANG Wei², YANG Xin¹, HUANG Jincong¹, LIU Jinlong¹ (1.School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China; 2.Gansu Road and Bridge Construction Group Co., Ltd., Lanzhou 730050, Gansu, China)

Abstract: Vibration produced by blast excavation of tunnels has a great influence on the safety of adjacent ancient buildings. To study the propagation law of blasting vibration waves, predict the ground vibration effect, and analyze the safety of adjacent ancient buildings, the dynamic response of Labuleng Temple under a blasting load was predicted using field measurements combined with numerical simulation analysis. The results show that (1) particle vibration velocity

收稿日期:2021-12-31

基金项目:国家自然科学基金资助项目(51769013);甘肃省基础研究创新群体(20JR5RA478)

第一作者简介:乔 雄(1980-),男,博士,副教授,硕士生导师,主要从事隧道与地下工程的科研教学。E-mail:qiaoxiong7599@qq.com。 **通信作者:**刘文高(1995-),男,硕士研究生,主要从事振动影响下古建筑结构安全的研究。E-mail:1562751571@qq.com。

increases with explosive quantity, and attenuation ratio increases with vibration velocity, indicating fast and slow attenuation of high- and low-frequency vibrations, respectively. (2) Blasting load is applied to the elastic boundary or contour plane of tunnel excavation, and dynamic simulation results show that their vibration velocity is consistent at intermediate or far distances larger than 40 m; therefore, applying the load on the contour plane of the tunnel excavation is reasonable. (3) Volume waveform at the free interface of blasting seismic wave is reflected to form Rayleigh waves propagating along the surface. Combined with the numerical simulation of the propagation law of seismic waves in the mountain, a complex vibration zone is formed in the mountain by reflection and superposition. (4) When the local seismic wave reaches the Labuleng Temple, radial, vertical, and synthetic vibration velocities have peak values of 0.000 672, 0.000 448, and 0.000 807 cm/s, respectively, which are far less than the safety vibration control standard of ancient buildings.

Keywords: blasting vibration; equivalent load; numerical simulation; blasting seismic wave; safety evaluation

0 引言

爆破振动引起邻近建筑物产生结构动力响应的 问题,目前已成为隧道爆破振动安全控制研究的焦 点^[1-2],特别是在所要保护的对象具有一定的重要性 和历史性的情况下爆破振动的控制就变得至关重 要^[3-4]。由于现场施工条件的不确定性以及环境的 复杂性,会使得爆破振动的传播具有复杂化、随机 性、难控制等特点,因此,对于爆破振动传播规律的 预测以及探究振动对邻近建筑结构的影响一直都是 人们所重视的理论和工程问题^[5-6]。

为了探究在爆破振动影响下邻近建筑结构的安 全性,诸多学者主要通过两种方法对隧道爆破振动 的传播规律进行了广泛的研究。一种方法是根据现 场实测数据对爆破应力波的传播规律进行回归分 析,对爆破振动衰减经验公式进行改进,得到适用于 该场地的爆破振动衰减公式,对振动速度的衰减规 律进行预测分析[7-8]。该方法需要对现场爆破进行 大量的数据监测,从而进行传播规律回归方程的分 析。由于不同地形以及不同岩土材料属性会导致回 归方程的预测分析存在一定的误差,并不能准确完 成预测振动的目的。另一种方法是通过数值模拟, 对炸药直接进行模拟以及将爆破等效荷载施加到弹 性边界或开挖轮廓面,以此来预测分析爆破地震波 的传播规律,确定建筑结构在爆破振动影响下的安 全性^[9-10]。由于对炸药直接定义需要严格的控制参 数,且炮孔相比于隧道整体模型的尺寸相差较大,网 格的划分以及材料间的相互连接问题会比较麻烦。 而在等效荷载施加方面仍可以进行简化,将荷载等 效施加在炮孔弹性边界简化为施加在开挖轮廓面

上,而对于两者之间差异的研究较少。

爆破地震波通常由 Rayleigh 波、S 波和 P 波等 组成^[11],不同波形的传播速度和衰减规律均存在一 定的差距,因此主导振动的波形势必会影响结构的 振动形式。由于不同类型的爆破孔在装药结构以及 起爆方式上存在一定的差异,同时岩体和爆破应力 之间的作用关系也不尽相同,因此所引起的爆破地 震波的组成成分就会不同^[12-13]。高启栋等^[14]通过 现场爆破实测,分析了三种不同掏槽孔爆破形式诱 发地震波的波形与组成的差异,并对特定位置处的 主导波形进行了预测分析。

由于爆破地震波传播过程不仅受到传播介质、 结构特性、爆源类型的影响,很大程度上也受到地形 地貌的影响,爆破振动波在障碍之间传播过程中凹 地形质点振动速度峰值小于凸地形质点速度峰值, 存在一定的振动放大效应^[15-16],所以地形对于爆破 振动的影响是不容忽视的。故本文将隧道掘进开挖 时的爆炸应力波简化为三角形压力荷载施加在等效 开挖轮廓面上进行数值模拟,根据工程实际地形,以 等高线为依据,山体轮廓线为自由边界,对实际情况 进行1:1有限元建模,结合拉卜楞隧道现场实测数 据进行对比分析,验证该数值模拟方法在爆破振动预 测中的可行性以及对拉卜楞寺在邻近隧道爆破环境 下的安全性进行评估,同时结合波动理论对爆破地震 波进行预测分析,可为类似工程的建设提供借鉴。

1 拉卜楞隧道爆破现场实测

1.1 工程概况

S38 线王格尔塘至夏河(桑科)公路是《甘肃省省

道网规划(2013—2030)》规划的 18 条联络线之一。 在夏河县段内的拉卜楞隧道按山岭区高速公路分离 式断面设计,双向四车道,设计行车速度80 km/h,隧 道为分离式的双洞,净宽 10.25 m,净高 5.0 m。为了 探究在爆破振动影响下邻近拉卜楞寺内的寺塔结构 安全性,首先对隧道口爆破情况进行现场实测,为预 测未开挖部分爆破的振动影响奠定数值基础。现场 试验选址及预爆破振动传播方向如图1所示。

Fig.1 Influence position and vibration test area of Labuleng Temple tower group

1.2 测试系统及测点布置

根据现场实际情况预估被测信号的幅值和频率 分布范围,选择的观测系统幅值范围上限应高于被 测信号幅值上限的20%,频响范围应包含被测信号 的频率分布范围,依据这个原则选择的观测系统就 不会出现削波、平台等情况。为此,选择中科测控所 产隧道爆破测振仪 TC-4850(记录时长为2.0 s,频 率为8000 Hz)三向振动速度型传感器和计算机组 成的观测系统进行振动信号的采集。智能爆破振动 测试仪器如图2所示。

为探究该地质条件下爆破振动传播规律,以达到 对拉卜楞寺振动的预测分析,结合实测数据对爆破振 动质点速度峰值进行统计分析,确定此工况的振动预 测符合现场爆破实测情况,从而达到预测离拉卜楞寺 最近爆破点位置振动效应的目的。因此根据现场调 查的情况,在拉卜楞隧道出口处共布置两条测线,左 洞一侧布置一号测线,右洞一侧布置二号测线,每条 测线各布置4个测点。测线布置如图3所示。

1.3 实测数据分析

根据现场隧道爆破开挖情况进行测线布置,监 测期间爆破工况类型由施工现场决定,试验仅对振 动数据进行采集。每条测线分别对三个不同工况进行了测试。选取邻近村庄的方向进行测线布置[图3(a)],这不仅能对隧道爆破振动的衰减规律进行预测分析,还可以对房屋质点振动情况进行监测,从而评估民房的安全性。其中,测线一主要监测左洞爆破药量分别为 30 kg、10.8 kg 和 9 kg 的现场地表质点实时振动情况;测线二主要监测右洞爆破药量分别为 10.8 kg、10.5 kg 和 9 kg 的现场地表质点实时振动情况。图 4 是两条测线在不同工况下爆破振动速度峰值随距离的衰减情况。

(a) 测点布置平面图
 (b) 现场部分测点布置图
 图 3 测点布置图
 Fig.3 Layout of measuring points

通过现场检测数据分析发现,测线一当单响总 药量为 30 kg 时,1[#]测点的振动速度峰值为 0.124 m/s,当传播到距离振源 201 m 处的 4[#]测点时振动 速度峰值衰减为 0.023 cm/s,衰减比为 81.45%;当 单响总药量为 10.8 kg 时,1[#]测点的振动速度峰值 为 0.053 m/s,衰减到 4[#]测点时振动速度峰值为 0.019 cm/s,衰减比为 64.15%;当单响药量为 9 kg 时,1*测点的振动速度峰值为 0.028 cm/s,衰减到

4[#]测点时速度峰值为 0.016 cm/s,衰减比为 42.86%。

图 4 测线的峰值振速图

Fig.4 Chart of peak vibration velocity of lines

对于测线二,当单响总药量为 10.8 kg 时,5[#]测 点振动速度峰值为 0.057 cm/s,振动波传播至距离振 源 352 m 处的 8[#]测点时振速衰减为 0.016 cm/s,衰 减比为 71.93%;当单响总药量为 10.5 kg 时,5[#]测点 的振动速度峰值为 0.045 cm/s,衰减至 8[#]测点时振 速为 0.016 cm/s,衰减比为 64.44%;当单响药量为 9 kg 时,5[#]测点的振动速度峰值为 0.02 cm/s,衰减至 8[#]测点时振速为 0.009 cm/s,衰减比为55.00%。

通过对各测线在不同工况下振动速度峰值衰减 情况进行分析表明,现场检测地表质点振动速度峰值 随着振源距的增加而逐渐减小,随着隧道单响爆破药 量的增加而增大。结合振动速度峰值衰减曲线走势 可以看出,高频振动衰减速度较快,而低频振动衰减 速度较慢,且对比分析各工况下振动速度衰减比可以 发现,振动速度越大衰减比就越大。对于振动控制一 般采取的措施只针对于高频振动,由于低频振动衰减 较慢,传播距离较远,而一般研究的建筑结构均处于 较远区,因此低频振动所带来的影响不容忽视。因 此,为了探究隧道爆破对拉卜楞寺建筑结构是否存在 一定的影响,需要对预爆破位置进行预测分析,避免 引起工程纠纷,维护各宗教,各民族团结。

2 爆破等效加载边界与荷载

2.1 爆破荷载作用边界的等效

为了能够达到对爆破振动全历程预测分析的目的,众多研究学者基于大量实验结合数值计算的方法提出了JWL状态方程,使得对于爆破振动的研究从理论跨越到实际上。但由于基于JWL状态方程下的 ALE 和 LAGRANGE 算法中计算结果对参数 控制要求都特别敏感,特别是在多孔起爆工况下,对

于炮孔的模拟以及模型的建立都给计算带来很大的麻烦,因此,有学者利用爆破荷载与各参数之间的关系将爆破荷载施加在结构面上。由于岩体爆破会形成一个极其复杂的动态环境,而目前对于爆破粉碎区和破裂区的确定仍然没有统一的参考依据,一般选取粉碎区半径为2~10倍的掏槽孔半径,破碎区半径为10~100倍掏槽孔半径^[17-18]。本文取r。=2rb,rf=10rb(rb为炮孔半径,rc为粉碎区半径,rf 为破碎区半径)。

对于爆破振动模拟等效荷载的模型主要为三角 形爆破荷载曲线,其荷载形式如图 5 所示,其中 t_r 和 t_d分别为荷载上升时间和正压时间。

根据凝聚炸药炮轰 C-J 理论的爆破脉冲峰值理 论计算方法,作用在炮孔壁上的爆破荷载峰值计算 公式如下:

$$P_{\rm b} = \frac{\rho_{\rm e} D^2}{2(\gamma + 1)} \tag{1}$$

式中: $\rho_e = 1200 \text{ kg/m}^3$ 为炸药密度;D = 4500 m/s为爆轰波速; γ 为等熵指数,一般取 3.0。

荷载上升时间 t_r 为爆轰波传播时间:

$$t_{\rm r} = L/D \tag{2}$$

式中:L 为炮孔长度;D 的意义同式(1)。

爆破荷载在掏槽孔周围按幂指数衰减,因此在 冲击波和应力波作用范围内衰减系数分别为 α =2+ $\mu/(1-\mu)$ 和 β =2- $\mu/(1-\mu)$,则等效到弹性边界 上的爆破荷载峰值为:

$$P_{\rm e}(x,t) = k P_{\rm b}(x,t) \left(\frac{r_{\rm b}}{r_{\rm c}}\right)^{2 + \frac{\mu}{1-\mu}} \left(\frac{r_{\rm c}}{r_{\rm f}}\right)^{2 - \frac{\mu}{1-\mu}} \quad (3)$$

式中:µ为围岩泊松比;k为当群孔起爆时的影响系数,其取值与掏槽孔的个数和分布位置有关。徐颖等^[19]认为k与掏槽孔之间爆破应力波叠加效应相关联,总结分析的基础上提出可用下式进行计算:

$$k = n_{t} \left(\frac{r_{f}}{r_{t}} \right) \tag{4}$$

式中:n,为掏槽孔的个数;r,为群孔起爆时等效弹 性边界的半径。通过忽略起爆时各炮孔间的相互作 用,则每一个炮孔在起爆过程中均可看作是半无限 介质内的机制作用,因此在起爆过程中各炮孔的等 效弹性边界可看作为各个炮孔破碎区的包络线。各 孔起爆破碎区包络线可近似看做群孔起爆的等效弹 性边界,如图 6 所示。

为了进一步简化模型,将施加在弹性边界上的 爆破荷载通过计算施加到开挖轮廓面上,其等效计 算公式为:

$$P_{\rm r}(x,t) = \frac{P_{\rm e}(x,t)}{\bar{r}^{\beta}} \tag{5}$$

式中: $\bar{r} = r/r_{o}$ 为对比距离;r为开挖面距炮孔中心 点的距离; β 为应力波衰减系数。

2.2 等效边界上的爆破荷载

由于山体内部有水渗出,则采用 2[#] 岩石乳化炸 药,密度为 1 200 kg/m³,爆轰波速为 4 500 m/s。 炮孔的具体参数如表 1 所列。

表1 等效加载边界与荷载计算参数

Fable 1	Equivalent	loading	boundary	and load	calculation	parameters

炮孔半径 r _b /m	炮孔长度 L/m	炮孔间距 a/m	粉碎区半径 $r_{\rm c}/{\rm m}$	破碎区半径 r _f /m	炮孔个数 n _t
0.02	5	2	0.04	0.2	6

根据前述计算方法和计算参数,由式(1)得炮孔 壁上爆破荷载峰值 P_b =3 038 MPa。荷载上升时间 和正压时间分别为 1.11 ms 和 8 ms。由式(3)等效 到弹性边界上的爆破荷载峰值 P_e =24.38 MPa;由 式(5)等效到开挖轮廓面上的爆破荷载 P_r =8.5 MPa,荷载上升时间和正压时间与掏槽孔壁弹性边 界荷载情况一致。

3 拉卜楞隧道爆破模拟及验证

根据现场实测调查情况,选取测线二位置为模拟 对象。采用 ANSYS/LS-DYNA 有限元来模拟振动动 力响应,根据圣维南原理,隧道模型右侧选取约5倍 洞径,隧道上边界至地表的距离与现场埋深一致,下 边界根据现场材料属性取至泥质板岩夹砂质板岩层 底,约60m。模型具体尺寸如图7所示。

将隧道掘进开挖时的爆炸应力波简化为三角形 压力荷载施加在等效荷载面上(开挖轮廓面和弹性 边界)进行数值模拟,以此比较不同等效边界对爆破 振动波传播的影响。同时,结合拉卜楞隧道现场爆 破振速数据验证该模拟方法的可靠性,为预测分析 隧道预爆破开挖位置对拉卜楞寺建筑结构振动影响

3.1 模型建立与等效荷载的施加

采用 NOT SOLVER MESH200 辅助单元和 SOLID164 六面体单元,以 SWEEP 技术对模型进 行网格划分。在有限元模拟分析中,网格的划分对 于模拟结果的精确与否有着紧密的关系。对于在隧 道爆破模型的网格划分,需要保证在最短波长上存 在 10 个以上的节点,这样爆破应力在网格之间传播 过程中进行累计叠加,节点在合理范围内越多,其累 计次数就越多,这样就会使得最终的结果误差相对 较小,从而提高模拟分析的精确度。在模型计算中, 以山体外轮廓线为自由边界,左右及下端面为计算 边界,采用黏性边界条件,能吸收边界处的入射波。 为消除计算边界对应力波传播的影响,在计算边界 处施加 NONREFLCTING BOUNDARY CONDI-TION,以模拟工程实际的无限介质体。由于爆炸 应力波在远场会衰减为弹性地震波,故本计算模型 中材料采用线弹性本构(* MAT ELASTIC)。

隧道在进行钻爆法掘进施工时,炸药释放能量 在岩体中产生冲击波,冲击波在隧道内部对岩体产 生破坏,并逐渐在山体内部衰减为弹性地震波。通 过模型的建立与材料属性的确定,将计算求得的爆 破荷载等效施加在隧道开挖轮廓面和弹性边界上, 以此来对比分析不同等效面的质点振速情况。施加 效果如图 8 所示。

图 8 等效荷载施加

Fig.8 Equivalent load application

3.2 计算参数的选取

由于在爆破地震波的作用下,爆破振动影响范 围内质点会从静力学问题转化为动力学问题,因此 众多学者从理论上出发分析岩土体静力学参数与动 力学参数之间的关系。王思敬等^[20]从理论上分析 了岩土体的动弹性模量(*E*_d)和静弹性模量(*E*_s)之 间的关系为:

$$E_{\rm d} = 8.757 \ 7E_{\rm s}^{0.588\ 2} \tag{6}$$

戴俊^[21]建立的动泊松比(μ_d)和静泊松比(μ_s) 之间的关系为:

$$\mu_{\rm d} = 0.8 \mu_{\rm s} \tag{7}$$

通过地质勘探资料可以得到现场围岩为泥质板 岩夹砂质板岩,属于Ⅳ级岩体。结合式(6)、(7)进行 动、静力学参数的相互转换。模拟材料的力学参数 如表 2 所列。

3.3 不同等效方法的模拟比较

根据计算得到的爆破荷载分别施加在弹性边界 和开挖轮廓面上,计算由爆破而引起的地表质点振 动速度峰值衰减规律,两种等效方法的数值模拟爆 破振动速度峰值随距离的衰减规律结果如图 9 所示。

 Table 2
 Physical and mechanical parameters of surrounding rock

表 2

			1		8	
密度 p/(kg/m³)	静弹模/GPa	静泊松比	动弹模/GPa	动泊松比	黏聚力/MPa	内摩擦角/(°)
2 372	1.5	0.37	11.117	0.296	0.2	30

围岩物理力学参数

图 9 不同等效方法的质点峰值振动速度衰减规律 Fig.9 Attenuation law of PPV with different equivalent methods

通过模拟结果可以看出,在距离振源 40 m 范 围内,爆破等效荷载施加在弹性边界上的振动速度 峰值较大,而在较远区两者的速度峰值则趋于一致。 在爆破振动对邻近建筑结构影响的研究中主要关注 的是爆源远区的振动速度峰值,因此对于近区的速 度峰值差别可不进行考虑,而以隧道内轮廓面为等 效荷载面,将隧道掘进开挖时的爆炸应力波简化为 三角形压力荷载施加在开挖轮廓面上进行数值模拟 对于本研究是可行的。

3.4 模拟结果与实测数据对比验证

为了验证采用将爆破荷载施加在开挖轮廓面上的正确性,求解完成后,利用后处理器对模拟结果进行分析,将数值模拟得到的质点振速与现场实测 K30+612 通道迎爆侧处山体振动数据进行对比验 证。通过对模拟结果分析选取距离爆破点 283 m 处的 5[#]测点进行数值对比,验证结果如图 10 所示。

爆炸应力波从隧道断面传出后 0.365 s 左右在 283 m 附近地面质点达到振速峰值。图 10(a)、(b) 的对比结果显示,实测径向爆破振动峰值为 0.036 cm/s,数值模拟得到的径向爆破振动峰值为 0.039 cm/s;实测垂向爆破振动峰值为 0.045 cm/s,数值 模拟得到的垂向爆破振动峰值为 0.040 3 cm/s。

表 3 为各测点模拟与实测对比结果。结合表 3 分析表明,数值模拟结果与实测结果相差不大,处于 同一数量级,差值百分比最大为 16.88%,最小为 1.91%,整体差值基本分布在 10%左右,模拟波形整

体走势和实测振速峰值基本吻合。对比说明了采用 该数值分析方法进行预爆破位置的模拟具有一定的 可靠性,同时也进一步验证了将各孔起爆荷载等效施 加在隧道开挖轮廓面上在该研究工况下是可行的。

Fig.10 Comparison curve of particle velocity time history between numerical simulation and field measurement at 283 m

表 3 各测点振动速度对比

Table 3	Comparison	between	vibration	velocities	of	each	measuring	point
---------	------------	---------	-----------	------------	----	------	-----------	-------

	测点位置							
对比参数	283 m		294 m		312 m		352 m	
	垂向	径向	垂向	径向	垂向	径向	垂向	径向
模拟值/(cm/s)	0.040 3	0.039 0	0.030 7	0.023 1	0.019 2	0.018 4	0.015 7	0.013 2
实测值/(cm/s)	0.045	0.036	0.035	0.027	0.021	0.019	0.016	0.014
差值百分比/%	11.66	7.69	14.01	16.88	9.38	3.26	1.91	6.06

4 爆破地震波的预测分析

依照古建筑保护及宗教相关规定,无法在拉卜 楞寺内布设振动测点。为了能够预测分析在距离拉 卜楞寺最近位置爆破是否对寺塔具有安全影响,根 据第二节模拟结果,对预爆破位置进行建模分析。

4.1 预测数值模型的建立

由于地形地貌对爆破振动传播规律具有一定的 影响,故本文以隧道尺寸和山体剖面轮廓线为基础, 利用关键点坐标,建立1:1二维爆破振动数值模 型。具体尺寸如图11所示。

4.2 地震波的波形预测

由爆破产生的冲击波在炮孔近区将对岩体产生 巨大的破坏作用,导致周围岩体产生塑性变形而达 到破坏开挖的作用。随着振动传播距离的增加,冲 击波的应力不断衰减,对岩体造成的影响逐渐变为 弹性,此种波形只会引起岩体的弹性振动,并以地震 波的形式传播对岩体介质产生扰动,一般建筑结构 会出现在该区域内,可能会产生一定的破坏作用。 由爆破引起的三种波的传播形式如图 12 所示。

通过数值计算结果分析隧道预开挖位置爆炸应 力波在岩体介质中衰减的全过程。各阶段应力云如 图 13 所示。t = 0.05 s[图 13(a)]时应力波由隧道 口向外传播,在无限介质体中,爆破激发的应力波场 均匀向外扩散。振动波的传播分为球面 P 波和球 面 S 波两种,云图显示在无限介质中振动波形光滑 有形,其传播形式为衰减的正弦波;当 t = 0.15 s[图 14(b)]时两种体波传播到自由表面处,由于透过自 由表面以后不再有介质。因此,当体波传播至自由 面时只会发生反射而不会发生透射,只会产生反射 波而不会产生透射波,且反射波中同时包含有非均

图 13 典型时刻合成振速分布云图(单位:m/s)

Fig.13 Nephogram of superposition vibration velocity distribution at typical moment (Unit:m/s)

图 14 P波自由边界的反射 Fig.14 Reflection of the free boundary of P wave

匀的 P 波和 SV 波(图 14),此类波沿着自由表面进 行传播,即面波(Rayleigh 波)。式(8)为 Rayleigh 波的波速方程^[22]:

$$\left(\frac{v_{\rm r}}{v_{\rm S}}\right)^6 - 8\left(\frac{v_{\rm r}}{v_{\rm S}}\right)^4 + 8\left(\frac{v_{\rm r}}{v_{\rm S}}\right)^2 \left(3 - \frac{2v_{\rm S}^2}{v_{\rm P}^2}\right) - 16\left(1 - \frac{v_{\rm S}^2}{v_{\rm P}^2}\right) = 0$$
(8)

通过对式(8)进行近似求解得到 Rayleigh 波的 波速表达式为:

$$v_{\rm r} \approx \frac{0.862 + 1.14\mu}{1+\mu} v_{\rm S}$$
 (9)

式中:µ为材料的泊松比。因此当材料的泊松比确 定时,其 P 波、S 波和 Rayleigh 波的量关系即可被 确定。

根据式(9)确定 Rayleigh 波的传播速度,则 Rayleigh 波的位移函数为:

$$\begin{cases} X = \frac{iv_{r}sA}{\omega(1 - v_{r}^{2}/2v_{s}^{2})} \left[\left(1 - \frac{v_{r}^{2}}{2v_{s}^{2}} \right) e^{-sz} - e^{-rz} \right] \exp[i(kx - \omega t)] \\ Z = \frac{v_{r}^{2}rsA}{\omega^{2}(1 - v_{r}^{2}/2v_{s}^{2})} \left[\left(1 - \frac{v_{r}^{2}}{2v_{s}^{2}} \right)^{-1} e^{-sz} - e^{-rz} \right] \exp[i(kx - \omega t)] \end{cases}$$
(10)

式中:r和 s为位移函数的参量, $r^2 = k^2 - \omega^2 / v_P^2$, $s^2 = k^2 - \omega^2 / v_S^2$;A为位移函数的常系数; $\omega = kv$ 为角频率。

通过式(10)可以看出,在相位上竖向位移和水 平向位移相差了 π/2,则可确定 Rayleigh 波的运动 轨迹为一椭圆。

为了能够进一步分析在波动情况下质点的位移,文献[22]中只考虑位移分量的实部,则得到 *X* 和 *Z* 的的表达式为:

$$\frac{X^2}{f_1^2(z)} + \frac{Z^2}{f_2^2(z)} = 1$$
(11)

式(11)表明 Rayleigh 波在沿水平和竖直方向以轴 长分别为 $f_1^2(z)$ 和 $f_2^2(z)$ 的椭圆运动,且当在自由 表面时(即z=0),质点的运动轨迹为逆向的椭圆, 竖向位移约是水平向位移的 1.5 倍,同时水平向位 移随着深度的改变不仅振幅发生变化,其运动方向 在 0.2 倍波长时发生由逆向到顺向的转变。质点运 动轨迹如图 15 所示。

当 *t* = 0.8 s时,由山顶反射回来的应力波再次 抵达隧道断面,形成更复杂的反射拉伸作用;当 *t* = 1.44 s时,初始波阵面后方,隧道断口附近应力波出 现大量叠加和衍射,形成复杂振动区,应力波初始波 阵面经过夏河抵达拉卜楞寺附近。

5 结构安全性评估

《爆破安全规程》^[24](简称:《规程》)规定:在评

价爆破振动对既有建筑物的影响时,用振动速度来 评价建筑结构的安全性更为合理。《规程》规定,对 于具有一定历史意义及需要重点保护的古建筑,当 主频率在 10~50 Hz 时,其安全振动速度标准为 0.2~0.3 cm/s。考虑到现场因素的影响以及建筑 结构的重要性程度和使用期间安全性的损减,且根 据国际标准 ISO^[25]以及部分学者^[26-28]对古建筑安 全振动容许值的规定,本研究取安全振动速度标准 为 0.03 cm/s,对预开挖位置 1 055 m 远处的拉卜楞 寺地表质点振动响应速度时程进行分析。

图 16 为 1.44 s 时 [图 13(d)] 拉卜楞寺附近地面

质点振速时程曲线。由于应力波的空间分布特性和 岩土介质的衰减作用,复杂的应力叠加和衍射现象主 要发生在隧道附近 500 m 左右范围,而拉卜楞寺附近 仅有爆炸应力波的初始波阵面。此时,径向振速峰值 为 0.000 672 cm/s,垂向振速峰值为0.000 448 cm/s, 合成振速峰值为 0.000 807 cm/s,远远小于安全振 动允许值 0.03 cm/s。加之,高能量密度的应力波在 山体中产生叠加衍射而出现符合岩体自振频率的复 杂波形,在传播至拉卜楞寺之前就完成了大幅衰减。 由此得出,隧道预爆破开挖点产生的爆破振动不会 对拉卜楞寺的结构稳定造成影响。

Fig.16 Time-history curve of ground particle vibration near Labuleng Temple

6 结论

(1)现场检测地表质点振动速度峰值随着振源 距的增加而逐渐减小,随着隧道单响爆破药量的增加而增大。对比分析各工况下振动速度衰减比可以 发现,振动速度越大,衰减比就越大。说明高频振动 衰减速度较快,而低频振动衰减速度较慢、传播距离远,对建筑结构的影响不容忽视。

(2) 通过将爆破荷载等效施加在开挖轮廓面上 和等效边界上发现,在40m范围内将荷载施加在 弹性边界上的振动速度峰值较大,而超过40m的 中远区两者趋于一致。关于爆破振动传播的研究主 要集中在中远区,所以为了数值模拟的简便性,可将 爆破等效荷载施加在隧道开挖轮廓面上。

(3)结合现场实测数据与数值模拟结果分析可 以得出,ANSYS/LS-DYNA 有限元数值计算模型 结果与实测结果基本一致,波形整体走势和峰值基 本吻合,对隧道爆破振动衰减有着很高的还原度,说 明采用此种有限元模拟的方法能够有效地预测爆破 影响下拉卜楞寺附近质点的振动动力响应情况。

(4) 当隧道在进行钻爆法掘进施工时,由爆破产 生的振动波随着距离的增加不断衰减而变为弹性地 震波。在爆破发生 1.44 s以后,振动波传播至拉卜楞 寺附近,在山体内部形成复杂的振动区。当距离振源 为1055.51 m时,拉卜楞寺附近质点振动幅值最大值 为合成振速峰值0.000807 cm/s,又因高能量密度的 应力波在山体中产生叠加衍射而出现的符合岩体自 振频率的复杂波形在传播至拉卜楞寺之前就完成了 大幅衰减。所以可以得出,隧道预爆破开挖位置产生 的爆破振动不会对拉卜楞寺建筑结构的安全性造成 影响。

参考文献(References)

 [1] 龚敏,秦天,吴吴骏,等.基于多建构筑物不同振速控制的坐标 点阵化隧道安全单段药量计算方法[J].振动与冲击,2020,39
 (20):134-141.

GONG Min, QIN Tian, WU Haojun, et al. A coordinate lattice computational method of safe charges per delay in a tunnel under different vibration velocities [J]. Journal of Vibration and Shock, 2020, 39(20): 134-141.

- [2] CARDU M,CORAGLIOTTO D,ORESTE P.Analysis of predictor equations for determining the blast-induced vibration in rock blasting[J]. International Journal of Mining Science and Technology, 2019, 29(6):905-915.
- [3] 朱利明,吴志强,邢世玲,等.隧道爆破开挖施工对古建筑振动 速度的影响[J].建筑结构,2019,49(10):26-29.
 ZHU Liming, WU Zhiqiang, XING Shiling, et al. Influence of tunnel blasting excavation on the vibration velocity of ancient buildings[J].Building Structure,2019,49(10):26-29.
- [4] CHEN L J, CHEN J X, LUO Y B, et al. Propagation laws of blasting seismic waves in weak rock mass: a case study of

Muzhailing tunnel[J].Advances in Civil Engineering, 2020(9): 1-15.

- [5] TIAN L,LI Z X.Dynamic response analysis of a building structure subjected to ground shock from a tunnel explosion[J].International Journal of Impact Engineering, 2008.35(10):1164-1178.
- [6] 叶培旭,杨新安,凌保林,等.近距离交叉隧洞爆破对既有隧道的振动影响[J].岩土力学,2011,32(2):537-541.
 YE Peixu,YANG Xin'an,LING Baolin, et al. Vibration effects on existing tunnel induced by blasting of an adjacent cross tunnel[J].Rock and Soil Mechanics,2011,32(2):537-541.
- [7] KRYLOV V V.Ground vibration boom from high-speed trains
 [J]. Journal of Low Frequency Noise, Vibration and Active Control, 1999, 18(4): 207-218.
- [8] JIANG Y Q, LIU D S, WU Y, et al. Experimental analysis of blasting vibration of Jiaohuayu tunnel on Xingyan expressway in Beijing[J]. Tunnel Construction, 2018, 38(2):224-231.
- [9] 刘小鸣,陈士海.隧道掘进中掏槽孔爆破引起的地表振动波形 预测[J].岩土工程学报,2019,41(9):1731-1737.
 LIU Xiaoming, CHEN Shihai. Prediction of surface vibration waveform caused by cuthole blasting in tunneling[J]. Chinese

Journal of Geotechnical Engineering, 2019, 41(9): 1731-1737.

- [10] SHIN J H, MOON H G, CHAE S E. Effect of blast-induced vibration on existing tunnels in soft rocks[J]. Tunnelling and Underground Space Technology, 2011, 26(1):51-61.
- [11] DOWDING C H.Blast vibration monitoring and control[M]. Englewood Cliffs, NJ:Prentice-Hall, 1985.
- [12] 高启栋,卢文波,杨招伟,等.垂直孔爆破诱发地震波的成分构 成及演化规律[J].岩石力学与工程学报,2019,38(1):18-27. GAO Qidong,LU Wenbo,YANG Zhaowei,et al.Components and evolution laws of seismic waves induced by vertical-hole blasting[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(1):18-27.
- [13] 高启栋,卢文波,杨招伟,等.水平光面爆破激发地震波的成分及衰减特征[J].爆炸与冲击,2019,39(8):170-182.
 GAO Qidong,LU Wenbo,YANG Zhaowei,et al.Components and attenuation of seismic waves induced by horizontal smooth blasting[J]. Explosion and Shock Waves, 2019, 39 (8):170-182.
- [14] 高启栋,卢文波,冷振东,等.考虑爆源特征的岩石爆破诱发地 震波的波型与组分分析[J].岩土力学,2021,42(10):2830-2844.
 GAO Qidong,LU Wenbo,LENG Zhendong, et al. Analysis of wave-type and seismic component induced by rock blasting considering source characteristics[J].Rock and Soil Mechanics,2021,42(10):2830-2844.
- [15] 唐海,李海波,蒋鹏灿,等.地形地貌对爆破振动波传播的影响 实验研究[J].岩石力学与工程学报,2007,26(9):1817-1823. TANG Hai, LI Haibo, JIANG Pengcan, et al. Experimental study on effect of topography on propagation of blasting waves[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(9):1817-1823.
- [16] SPYROS S, FOTIS R. Computer simulation of shock waves transmission in obstructed terrains[J]. Journal of Loss Prevention in the Process Industries, 2004, 17(6):407-417.

- [17] 陈士海,王明洋,赵跃堂,等.岩石爆破破坏界面上的应力时程研究[J].岩石力学与工程学报,2003,22(11):1784-1788. CHEN Shihai, WANG Mingyang, ZHAO Yuetang, et al. Time-stress history on interface between cracked and uncracked zones under rock blasting[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1784-1788.
- [18] ESEN S, ONEDERRA I, BILGIN H A.Modelling the size of the crushed zone around a blasthole[J].International Journal of Rock Mechanics and Mining Sciences, 2003, 40(4):485-495.
- [19] 徐颖,丁光亚,宗琦,等.爆炸应力波的破岩特征及其能量分布 研究[J].金属矿山,2002(2):13-16.
 XU Ying, DING Guangya, ZONG Qi, et al. Study on the characteristics of rock fragmetation and energy distribution by blast stress wave[J]. Metal Mine, 2002(2):13-16.
- [20] 王思敬,吴志勇,董万里,等.水电工程岩体的弹性波测试[M]. 北京:科学出版社,1980.
 WANG Sijing, WU Zhiyong, DONG Wanli, et al. Elastic wave test of rock mass in hydropower engineering.[M]. Beijing: Science Press, 1980.
- [21] 戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版 社,2002.

DAI Jun.Dynamic behaviors and blasting theory of rock[M]. Beijing:Metallurgical Industry Press,2002.

- [22] 吴世明.土动力学[M].北京:中国建筑工业出版社,2000.
 WU Shiming.Soil dynamics[M].Beijing:China Architecture
 & Building Press,2000.
- [23] FOTI S, LAI C, RIX G J, et al. Surface wave methods for near-surface site characterization [M]. Boca Raton, FL: CRC Press, 2014.
- [24] 国家质量监督检验检疫总局,中国国家标准化管理委员会.爆 破安全规程:GB 6722—2014[S].北京:中国标准出版社,2015. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, Safety regulations for blasting: GB 6722—2014[S]. Beijing: Standards Press of China,2015.
- [25] 徐建.建筑振动工程手册[M].2版.北京:中国建筑工业出版 社,2016.

XU Jian.Building vibration engineering handbook[M].2nd ed. Beijing:China Architecture & Building Press,2016.

- [26] KONON W, SCHURING J R. Vibration criteria for historic buildings[J]. Journal of Construction Engineering and Management, 1985, 111(3): 208-215.
- [27] REMINGTON P J, KURZWEIL L G. Low-frequency noise and vibrations from trains[M]//NELSON P M. Transportation noise.London:Butterworth & Co. Ltd., 1987.
- [28] 于晨昀,张呼客运专线隧道下穿长城烽火台遗址容许振动速度研究[J].铁道标准设计,2012,56(增刊1):39-42.
 YU Chenyun. Study on allowable vibration velocity of Zhang—Hu passenger dedicated line tunnel under the beacon tower site of the Great Wall[J].Railway Standard Design,

2012,56(Suppl01):39-42.