王宇亮,崔洪军,张玉敏,等.采用软钢阻尼器连接的L形装配式剪力墙抗震性能试验研究[J].地震工程学报,2021,43(3):663-671.doi:10.3969/j.issn.1000-0844.2021.03.663

WANG Yuliang, CUI Hongjun, ZHANG Yumin, et al. Experimental Study on Seismic Behavior of L-shape Fabricated Shear Walls Connected with Mild Steel Dampers[J]. China Earthquake Engineering Journal, 2021, 43(3):663-671. doi:10.3969/j.issn. 1000-0844.2021.03.663

采用软钢阻尼器连接的 L 形装配式剪力墙 抗震性能试验研究

王宇亮^{1,2,3},崔洪军¹,张玉敏^{2,3},庞 豹^{2,3},李 祥^{2,3},何 斌^{2,3},曹业启^{2,3} (1. 华北理工大学建筑工程学院,河北 唐山 063210; 2. 河北工业大学 土木与交通学院,天津 300401; 3. 河北省地震工程研究中心,河北 唐山 063009)

摘要:基于"强水平缝弱竖向缝"的设计理念,对采用软钢阻尼器直接连接腹板墙和翼缘墙的 L 形装 配式剪力墙试件进行低周反复荷载试验。试验结果表明试件的整体工作性能良好,其位移延性系 数均大于 2.6,具有良好的变形性能;阻尼器平面内工作性能良好,能够实现屈服耗能。设计中应考 虑阻尼器的屈服力对单片墙肢轴压比的影响,以满足规范对试件轴压比的要求,同时避免试件在两 个加载方向的承载力产生较大差异。

关键词:L形装配式剪力墙;阻尼器;滞回曲线;刚度;延性系数
中图分类号:TU398.2 文献标志码:A 文章编号:1000-0844(2021)03-0663-09
DOI:10.3969/j.issn.1000-0844.2021.03.633

Experimental Study on Seismic Behavior of L-shape Fabricated Shear Walls Connected with Mild Steel Dampers

WANG Yuliang^{1,2,3}, CUI Hongjun¹, ZHANG Yumin^{2,3}, PANG Bao^{2,3},

LI Xiang^{2,3}, HE Bin^{2,3}, CAO Yeqi^{2,3}

(1. College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China;
 2. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China;

3. Earthquake Engineering Research Center of Hebei Province, Tangshan 063009, Hebei, China)

Abstract: Based on the design concept of "strong horizontal joints and weak vertical joints", a series of low-cyclic reversed loading tests were carried out on three L-shape fabricated shear wall specimens with web wall and wing wall connected by mild steel dampers. The test results showed that the overall working performance of specimens is good; the displacement ductility coefficient of specimens is greater than 2.6, showing good deformation performance; the damper has good in-plane performance and can achieve yield energy dissipation. The influence of the yield force of

收稿日期:2019-11-20

基金项目:国家自然科学基金(51678237);河北省建设科技研究计划项目(2020-05-02)

第一作者简介:王宇亮(1980-),男,河北昌黎人,博士研究生,副教授,主要从事结构抗震、防灾减灾方面的研究。

E-mail:14522466@qq.com.

通信作者:张玉敏(1973-),女,河北唐山人,博士,教授,主要从事结构抗震、防灾减灾方面的研究。E-mail:710765269@qq.com。

dampers on the axial compression ratio of specimens should be considered to avoid a great difference of the bearing capacity of specimens in two loading directions.

Keywords: L-shape fabricated shear wall; damper; hysteretic curve; stiffness; ductility factor

0 引言

装配式剪力墙结构是将预制构件在施工现场进 行装配的新型结构体系,其构件适用于工业化生产, 可大幅减少现场湿作业,符合建筑节能减排的需求, 具有良好的应用前景。国内外学者对此进行了大量 的研究,并取得了一定成果。

Crisafulli 等^[1]研究了一种新型焊接连接竖向 接缝的抗震性能,给出了该类竖向接缝的剪切刚度、 屈服强度及极限强度的简化表达式。Pantelides 等^[2]采用纤维聚合物(FRP)加固预制装配式剪力墙 的竖向接缝,进行拟静力试验发现 FRP 连接能够有 效传递荷载,并获得比焊接节点板更强的连接强度。 宋国华等[3]进行了装配式大板结构竖向接缝在低周 反复荷载作用下的抗震性能研究,研究结果表明:竖 向接缝的最大受剪承载力随接合筋直径的增大而增 大,与接缝宽度呈非线性关系,且通过接缝混凝土的 斜压杆机制和接合筋的压力摩擦机制表现出来;接 缝混凝土强度的退化率随接缝宽度的增大而减小; 接合筋强度退化率仅与剪切摩擦系数有关。杨勇[4] 针对预制混凝土构件竖向拼接的结合面性能及其对 墙体抗震性能的影响完成了拟静力试验,并通过试 验数据分析得出了考虑剪切钢筋的销栓、剪切摩擦 力共同作用的结合面抗剪计算公式。王啸霆^[5]针对 装配式型钢剪力墙组合结构中的竖缝连接,以型钢 替代传统剪力墙边缘构件中的钢筋进行了拟静力试 验研究,证明装配整体式型钢剪力墙组合结构具有 良好的抗震性能和整体性,各项性能指标均接近或 达到现浇结构的水平。孙建等[6-7]采用连接钢框、高 强度螺栓将预制钢筋混凝土剪力墙连接起来,并进 行了低周往复载荷试验,结果表明该全装配式剪力 墙具有较高的承载能力、较好的延性性能以及耗能 能力。秦士洪等[8] 对竖向拼缝采用无筋键槽形式的 L形剪力墙抗震性能进行了试验研究,试验结果表 明:竖向拼缝对墙体的裂缝发展有一定影响,但对试 件的水平承载力和破坏形态没有明显影响;竖向拼 缝的位置对耗能能力的影响不大。沈郁等^[9]对 L 形预制装配式剪力墙进行了低周往复荷载试验,研 究不同轴压比下剪力墙试件的骨架曲线、位移延性 和耗能性能,并与现浇剪力墙试件进行比较,结果表 明:L形预制装配式剪力墙的轴压比增大,水平承载

能力得到提升,但延性和耗能性能有所下降;轴压比 相同的情况下,L形预制装配式剪力墙的水平承载 能力、位移延性、耗能性能均优于现浇剪力墙。张伟 林等^[10]对叠合板式剪力墙 L型墙体抗震性能进行 了试验研究,结果表明叠合板式剪力墙与全现浇剪 力墙的抗震性能基本一致,并提出叠合板式混凝土 剪力墙结构基于性能的抗震设计方法。

综上可见,为确保装配式剪力墙结构的整体性 和连续性,目前常用的做法是将连接处设计成强连 接。这种设计的整体性能较好,但施工较为复杂。 为实现装配式剪力墙结构的快速拼装,拟提出装配 式剪力墙结构"强水平缝弱竖向缝"的实施方法,并 设计3个装配式剪力墙试件进行低周往复荷载试 验,通过对其承载力、延性及耗能能力等进行分析, 研究该类型结构的力学性能和抗震性能。

1 试验设计

装配式剪力墙结构中存在大量竖向接缝,因此 在纵墙和横墙交接处,尤其在结构边缘部位会形成 大量L形节点(图1)。将阻尼器设置于纵墙和横墙 交接处的竖缝中形成"弱竖向缝",阻尼器既能够屈 服耗能,提高结构的抗震性能,还可起到连接墙肢的 作用;水平接缝则采用已有的连接方式实现"强水平 缝"。在水平荷载作用下,竖向缝中的阻尼器首先达 到屈服耗能,形成类似于"强柱弱梁"的破坏机制, 提高结构的抗震性能;而对于水平缝则应避免其产

生较大变形,因为过大的变形易形成引起结构倒塌 的机制。

试验共设计了 3 个试件,编号列于表 1(L 表示 L 形装配式剪力墙试件,25 表示开缝宽度为 250 mm,0.1 及 0.3 表示轴压比),其他设计参数见图 2。 试件制作时在墙片连接的位置放入预埋钢板,以此 作为阻尼器的连接装置,其节点构造如图 3 所示。 根据课题组前期对带缝软刚阻尼器的试验结果^[11], 选用图 4 所示的阻尼器,其工作性能参数分别为:屈 服位移为 1.75 mm,极限位移 20.19 mm,屈服荷载 55.76 kN,极限荷载 94.72 kN。

表1 L 形剪力墙试件

Table1	L-shape	shear-wall	specimens
--------	---------	------------	-----------

编号	混凝土强度等级	竖缝宽度/mm	轴压比
L-25-0.1	C30	250	0.1
L1-25-0.1	C40	250	0.1
L1-25-0.3	C40	250	0.3

图 2 试件几何尺寸及配筋(单位:mm)

在墙片制作时预先埋入连接钢板作为阻尼器的 连接板,将软钢阻尼器与预埋板焊接连接,安装时使 阻尼器受力面位于墙体受力平面内,以实现其良好 的工作性能。考虑到采用灌浆套筒连接的装配式剪 力墙结构的水平缝能够实现等同于现浇的性能,为 简化制作,试验对试件的水平缝采用现浇的形式。 试验共布置了3个阻尼器,分别为 DS、DZ、DX(图 2)。试验所用的钢筋和混凝土材料性能分别列于 表 2、表 3。

图 4 阻尼器示意图 Fig.4 Diagram of the damper

表 2 钢筋材料性能 Fable 2 Properties of reinforcement

	able 2 Troperties	s of remnorcement	
钢筋直径 /mm	屈服应力 σ _y /(N・mm ⁻²)	极限应力σ _u /(N・mm ⁻²)	强屈比 λ
8	475	688	1.45
10	473	696	1.47
12	451	609	1.35
25	465	658	1.42

	Table 3 Properties of	concrete
混凝土强度 等级	立方体抗压强度 平均值/(N•mm ⁻²)	轴心抗压强度 平均值/(N・mm ⁻²)
C30	32.8	21.94
C40	41.8	27.96

表 3 混凝土材料性能

2 加载装置及加载方案

试验的加载装置如图 5 所示。采用 1 000 kN 作动器(MTS)施加水平往复荷载,上部的千斤顶施 加轴压力,在试件上、中、下 3 个部位分别布置位移 计以测量试件的水平位移。采用位移控制的加载方 式进行加载,作动器中心到基础梁顶的距离为 2 880 mm,剪力墙结构的最大弹塑性层间位移角为 1/120,此时对应的作动器水平加载位移为 24 mm。 根据文献[12]确定加载速率为 0.5 mm/s,每级加载 循环两周。当承载力降至峰值的 85%以下,或发生 不适宜继续加载的过大变形或超出设备能力时,试 验终止。

具体加载方案列于表 4。同时规定 MTS 向西 推时为正,向东拉时为负。

图 5 试验加载装置 Fig.5 Test loading equipment

-0	 	

表 4	加	载	方	案
-----	---	---	---	---

	Table 4	Loading scheme	
序号	角位移	顶点位移/mm	循环次数
1	1/840	3.4	2
2	2/840	6.9	2
3	4/840	13.7	2
4	7/840	24	2
5	10.5/840	36	2
6	14/840	48	2
7	17.5/840	60	2
8	21/840	72	2
9	24.5/840	84	2

3 试验现象

3.1 L-25-0.1 试验现象

加载初期试件处于弹性状态;加载位移为13.7 mm时,腹板墙下部距墙肢边缘约550 mm处出现 一条斜裂缝,并以45°角向两侧延伸约150 mm,此 后随着加载位移的增加裂缝持续出现并扩展;加载 位移为48 mm时,腹板墙下部出现塑性铰,混凝土 保护层剥落;加载位移为60 mm时,塑性铰处的混 凝土完全压碎,钢筋被压弯露出(图6),此时试件承 载力下降,停止加载。试件的裂缝及塑性铰主要出 现在腹板墙上,说明腹板墙对试件的承载能力等起 到主要作用;翼缘墙则以水平裂缝为主,这说明其受 到弯矩的作用较为明显。

试件 L-25-0.1 最终的裂缝开展情况如图 7 所示。

图 6 L-25-0.1 塑性铰 Fig.6 Plastic hinge of L-25-0.1

Fig.7 Fracture development diagram of L-25-0.1

3.2 L1-25-0.1 试验现象

加载初期,试件处于弹性工作状态;加载位移为

6.9 mm时,腹板墙连接阻尼器一侧出现一条水平裂 缝。此后原有裂缝继续开展,同时又出现多条裂缝, 且在构件边缘呈水平分布,后逐渐转为倾斜,两侧裂 缝逐渐向中心发展,在试件中部形成交叉斜裂缝。 加载位移为48 mm时,腹板墙下角出现塑性铰(图 8),由于竖向钢筋的锚固不足,出现了钢筋被拔出的 现象。加载位移为72 mm时,试件承载力出现了明 显下降,完成本级加载后停止加载。试件的破坏主 要集中于腹板墙,翼缘墙主要承受弯矩的作用;由于 试件承载力的提高,伸入基础梁的竖向钢筋出现了 拔出现象,对试件产生了一定影响。

试件 L1-25-0.1 最终的裂缝开展情况如图 9 所示。

图 8 L1-25-0.1 塑性铰 Fig.8 Plastic hinge of L1-25-0.1

Fig.9 Fracture development diagram of L1-25-0.1

3.3 L1-25-0.3 试验现象

加载初期试件处于弹性状态。加载位移为13.7

mm时,由于腹板墙的轴压力过大及千斤顶施加的 集中荷载,在腹板墙上部出现了一条竖向劈裂裂缝, 长度约为70mm;同时腹板墙两侧各出现一条斜裂 缝,长度分别为300mm和180mm,并以45°角向 斜下方发展,随着加载位移的增加裂缝持续开展并 交叉。加载位移为36mm时,在腹板墙下部出现了 塑性铰(图10)。在此后的加载过程中,裂缝持续发 展,腹板墙的塑性铰破坏也更加明显,竖向劈裂裂缝 继续向下延伸。加载位移为72mm时,塑性铰混凝 土剥落,竖向钢筋出现不同程度的压弯屈服,试件的 承载力下降,在本级加载结束后停止试验。试件的 破坏集中于腹板墙,翼缘墙只有少量水平裂缝,说明 腹板墙对试件的承载能力起主要作用。

试件 L1-25-0.3 最终的裂缝开展情况如图 11 所示。

图 10 L1-25-0.3 塑性铰 Fig.10 Plastic hinge of L1-25-0.3

图 11 L1-25-0.3 裂缝开展示意图 Fig.11 Fracture development diagram of L1-25-0.3

4 试验结果及分析

4.1 滞回曲线

图 12 为 3 个试件在试验中的滞回曲线。由图 可见:在加载初期,试件处于弹性工作阶段;随着加 载位移的增加,滞回环所包围的面积及高度逐渐增加;在卸载后出现了残余变形,同时滞回曲线的中部 均有不同程度的"捏缩"现象,说明试件出现了不同 程度的钢筋拔出和滑移现象。试件承载力增长幅度 小于位移增长幅度,但试件的变形能力及耗能能力 增强。由于腹板墙和翼缘墙强度和刚度的差异,以 及在竖缝布置阻尼器后其屈服力作用于腹板墙和翼 缘墙上,并随加载方向的改变而变化,引起腹板墙和 翼缘墙的实际轴压比增大或减小,由此造成试件在 两个加载方向的承载力有差异,耗能也有所不同。

图 12 试件的滞回曲线

Fig.12 Hysteresis curves of specimens

总体来看,3个试件的滞回曲线均较为饱满,表 现出良好的耗能性能,翼缘墙保持了良好的平面内 工作性能,但竖向钢筋锚固不足及滑移等对试件的 整体受力性能产生了一定的不利影响。

4.2 骨架曲线及刚度退化曲线

图 13 给出了 3 个 L 形试件的骨架曲线。由图可 知,在加载初期各试件的骨架曲线基本呈直线,说明 试件均处于弹性阶段;随加载位移的增加骨架曲线逐 渐向水平轴倾斜,斜率也随之减小,试件水平位移的 增长明显快于荷载,说明试件的刚度出现了退化,试 件进入塑性变形阶段;当加载超过最大弹塑性层间位 移角(1/120)后,骨架曲线仍保持上升的趋势,承载力 随加载位移的增加而提高,一直到试件最终破坏。试

件 L1-25-0.3 由于竖向劈裂裂缝的影响,加载后期其 承载力几乎没有增长,但仍保持了稳定的承载能力。

总体来看,3个试件的承载力均随加载位移的 增加而增加,直到破坏前其承载力始终保持稳定。 加载后期由于塑性铰破坏及竖向钢筋的屈服,试件 承载力略有下降。3个试件均表现出良好的变形性 能。试件 L1-25-0.1 和 L1-25-0.3 均出现了竖向钢 筋从基础梁拔出的现象,说明随墙肢承载力的提高, 其对钢筋的锚固要求也越高,应采取足够的措施保 证结构水平缝的可靠连接,即结构应该首先满足"强 水平缝"的设计要求。

采用等效刚度对试件的刚度退化规律进行分析^[13],给出了3个试件的刚度退化曲线(图14)。由

图 14 可知,3 个试件的刚度退化规律基本一致:腹板 墙和翼缘墙的强度和刚度越大,试件的初始刚度和残 余刚度也越大;试件在开裂阶段的刚度退化最为明 显,此后由于裂缝逐渐出齐,刚度退化曲线也逐渐趋 于平缓。试件 L1-25-0.1 和 L1-25-0.3 的负向刚度大 于正向刚度,由于加载采用位移控制,试件负向加载 的承载力大于正向加载是造成负向刚度大于正向刚 度的主要原因。由于试验测量误差及螺栓松动,L-25-0.1 负向初始刚度小于正向初始刚度,但随着加载位 移的增加正向刚度退化得更快,其值也小于负向刚度。

4.3 承载力及延性

根据试验结果可知,腹板墙和翼缘墙采用阻尼 器连接后,其整体具有良好的力学性能和变形性能。 表5给出了试件在不同加载阶段的荷载、位移以及 位移延性系数。由表5可知,试件在两个加载方向 的承载力有差异,在加载初期差异不大,随加载位移 的增加差异逐渐变大。这是由于在加载过程中阻尼 器给墙肢施加了不同方向的荷载,造成腹板墙和翼 缘墙轴压比增大或减小,进而造成试件整体承载力 在两个加载方向的差异。加载初期,阻尼器两端相 对位移较小,其对腹板墙和翼缘墙的轴压比变化影 响较小,因此试件两个加载方向的承载力差别不大: 随加载位移的增加,阻尼器达到屈服,加上屈服后钢 板的强化作用,造成腹板墙和翼缘墙的轴压比在两 个加载方向有较大变化,使试件在两个加载方向的 承载力有较大差异。试件 L1-25-0.1 与 L1-25-0.3 相比仅改变了轴压比,随着轴压比的提高试件的开 裂及屈服荷载均显著提升。试件 L1-25-0.3 的正向 极限承载力略有下降,其负向极限承载力虽有提高 但幅度不大,这是由于负向加载时阻尼器屈服力与 轴压力叠加造成腹板墙实际轴压比大于设计值,且 千斤顶施加的是集中荷载,造成腹板墙上部出现了 坚向劈裂裂缝,改变了试件受力形态,从而对试件的 极限承载力产生了影响[14]。

表 5 L 形剪力墙承载力、位移及延性系数

 Table 5
 Bearing capacity, displacement, and ductility coefficient of L-shape shear wall

伯旦			荷载/kN			位移/mm		位移延性
5冊 石		开裂	屈服	峰值	开裂	屈服	峰值	系数 μ
I -25-0 1	正向	104.71	185.87	276.60	6.49	15.01	71.42	4.76
D 20 0.1	负向	128.58	343.00	438.82	6.70	23.86	63.69	2.67
I 1-25-0 1	正向	159.71	320.48	529.93	6.97	19.87	58.65	2.95
EI 20 0.1	负向	151.87	355.30	702.47	7.45	20.06	63.34	3.16
I 1_25_0 3	正向	199.96	396.54	473.13	9.95	19.03	68.92	3.62
L1 20 0.0	负向	263.52	457.57	758.28	10.59	19.46	64.40	3.31

由表 5 可知,随着试件承载力的提高,其位移延 性系数呈下降趋势;由于试件竖向钢筋的滑移和拔 出以及试件 L1-25-0.3 在腹板墙上部出现竖向劈裂 裂缝,对试件的位移延性系数产生了一定影响。总 体来看,除试件 L-25-0.1 负向加载时和试件 L1-25-0.1 正向加载时的位移延性系数小于 3 以外(分别为 2.67、2.95),其余均大于 3,说明试件具有较好的延 性,可满足结构抗震设计的要求。

5 试件及阻尼器的耗能分析

5.1 等效黏滞阻尼系数

使用效黏滞阻尼器系数 < 来评价试件的能量耗 散能力,并将其列于表 6。由表 6 可知,3 个试件的 等效 黏滞阻尼系数均大于 0.3,其最大值分别为 0.404、0.398、0.35,整体耗能性能较好。试件的等效 黏滞阻尼系数随加载位移的增加而逐渐增大,说明 随着加载位移的增加,阻尼器达到屈服开始耗能,且 试件的钢筋屈服和混凝土压碎都提高了试件的 耗能。

表 6 等效黏滞阻尼系数 ξ

rubie o Equivalent viscous dumping coefficient	Fable 6	Equivalent	viscous	damping	coefficient	ξ
--	---------	------------	---------	---------	-------------	---

	-			
加载位移/mm	L-25-0.1	L1-25-0.1	L1-25-0.3	
3.4	0.330	0.304	0.339	
6.9	0.341	0.318	0.325	
13.7	0.341	0.339	0.340	
24	0.354	0.371	0.348	
36	0.348	0.378	0.334	
48	0.378	0.369	0.340	
60	0.380	0.379	0.350	
72	0.404	0.398	0.343	

5.2 阻尼器耗能分析

对于试件中阻尼器的分析,首先做如下假设:阻 尼器屈服后不考虑其强化作用,即阻尼器屈服后其 屈服力保持不变,以此为前提绘制阻尼器的滞回曲 线并确定其耗能^[14-19](表7)。由表7可知,3个L 形装配式剪力墙试件的耗能性能均较好;随着试件 承载力的提高,阻尼器提供的附加阻尼比随之下降, 试件L1-25-0.3的附加阻尼比与L1-25-0.1相同,但 小于 L-25-0.1,说明轴压比对阻尼器耗能的影响并 不显著。由于试件 L1-25-0.3 出现了竖向劈裂裂缝 以及受到钢筋滑移及拔出的影响,对阻尼器的耗能 产生了一定影响,试件 L1-25-0.1 和 L1-25-0.3 的附 加阻尼比小于 L-25-0.1。

表 7 试件及阻尼器的总耗能量

Table 7 Ellergy dissibation of specifiens and damper	Table 7	Energy	dissipation	of	specimens	and	damper
--	---------	--------	-------------	----	-----------	-----	--------

		-	-
讨仇绾早	阻尼器总耗能	试件总耗能	附加阻尼比
以口油ウ	/(kN • mm)	$/(kN \cdot mm)$	/ %
L-25-01.	42 496.97	324 381.56	1.042
L1-25-0.1	28 645.33	506 353.89	0.45
L1-25-0.3	32 347.86	570 019.84	0.45

总体来看,将阻尼器作为L形装配式剪力墙腹 板墙与翼缘墙的连接装置,不仅实现了较好的耗能, 提高试件的抗震性能,且起到了较好的连接作用,保 证了结构的整体工作性能。

6 结论及建议

本文通过对 3 个 L 形装配式剪力墙试件进行 低周往复载荷试验,分析其力学性能和抗震性能,得 出以下主要结论:

(1)采用软钢阻尼器连接腹板墙与翼缘墙的L 形装配式剪力墙试件,其在受力方向的整体工作性 能良好。阻尼器实现了屈服耗能,为试件提供一定 的附加阻尼,提高了试件的抗震性能,同时也起到了 连接腹板墙和翼缘墙的作用。

(2)由于腹板墙和翼缘墙的强度及刚度的差异,以及加载过程中阻尼器对其轴压比的改变,造成 试件承载力在两个加载方向的差异,但这种差异随 着试件承载力的提高而减小。试件 L1-25-0.3 在腹 板墙上部出现了劈裂裂缝,对试件整体性能产生了 一定影响,因此设计中应充分考虑阻尼器的屈服力 对试件中单片墙肢轴压比的影响。

(3)随着试件承载力的提高,3个L形装配式 试件的位移延性系数有所降低;除试件L-25-0.1负 向加载时和L1-25-0.1 正向加载时的位移延性系数 小于3以外,其余均大于3,说明采用阻尼器连接腹 板墙和翼缘墙的L形装配式剪力墙试件有良好的 延性。

(4)3个L形装配式剪力墙试件破坏时的弹塑 性层间位移角都大于规范要求的限值(1/120),且试 件在破坏时的最小弹塑性层间位移角也达到了规范 要求的2.5倍,说明本文所设计的L形装配式剪力 墙结构能够满足现行规范的设计要求。

参考文献(References)

- [1] CRISAFULLI F J, RESTREPO J I. Ductile steel connections for seismic resistant precast buildings[J]. Journal of Earthquake Engineering, 2003, 7(4):541-553.
- [2] PANTELIDES C P, VOLNYY V A, GERGELY J, et al. Seismic retrofit of precast concrete panel connections with carbon fiber reinforced polymer composites[J].PCI Journal, 2003, 48 (1):92-104.
- [3] 宋国华,柳炳康,王东炜.反复荷载作用下 PBPS 竖缝抗震性能 试验及理论研究[J].建筑结构学报,2003,24(6):18-24. SONG Guohua,LIU Bingkang,WANG Dongwei.Experimental and theoretical study on seismic behavior of vertical connection in PBPS under repeated loading[J].Journal of Building Structures,2003,24(6):18-24.
- [4] 杨勇.带竖向结合面预制混凝土剪力墙抗震性能试验研究[D].
 哈尔滨:哈尔滨工业大学,2011.
 YANG Yong.Experimental research on seismic performance of precast shear wall with vertical joint surface[D].Harbin:Harbin Institute of Technology,2011.
- [5] 王啸霆.新型装配式型钢剪力墙组合结构抗震性能研究[D].北 京:北京建筑大学,2013.

WANG Xiaoting. Seismic behavior of precast SRC wall composite structure[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2013.

- [6] 孙建,邱洪兴,谭志成,等,采用螺栓连接的工字形全装配式 RC 剪力墙试验研究[J].工程力学,2018,35(8):172-183,191.
 SUN Jian,QIU Hongxing, TAN Zhicheng, et al. Experimental study on I-shaped precast reinforced concrete shear walls using bolted connections[J]. Engineering Mechanics, 2018, 35(8): 172-183,191.
- [7] 孙建,邱洪兴,谭志成,等.螺栓连接全装配式一字形 RC 剪力 墙受力性能试验研究[J].建筑结构学报,2016,37(3):67-75.
 SUN Jian, QIU Hongxing, TAN Zhicheng, et al. Experimental study on mechanical behavior of rectangular precast reinforced concrete shear wall utilizing bolted connections[J]. Journal of Building Structures,2016,37(3):67-75.
- [8] 秦士洪,范世杰,张瀑,等.竖向拼缝L形剪力墙抗震性能试验
 [J].重庆大学学报,2019,42(1):36-47.
 QIN Shihong, FAN Shijie, ZHANG Pu, et al. Experimental study on seismic behavior of L-shaped shear wall with vertical joints[J].Journal of Chongqing University (Natural Science Edition),2019,42(1):36-47.
- [9] 沈郁,夏小喜.L形预制装配式剪力墙抗震性能研究[J].中国水运(下半月),2019,19(4):228-229,232.
 SHEN Yu,XIA Xiaoxi.Study on seismic behavior of L-shaped fabricated shear walls[J].China Water Transport, 2019, 19 (4):228-229,232.

- [10] 张伟林,沈小璞,吴志新,等.叠合板式剪力墙 T 型、L 型墙体 抗震性能试验研究[J].工程力学,2012,29(6):196-201.
 ZHANG Weilin,SHEN Xiaopu,WU Zhixin,et al.Experimental study of seismic performance on T and L types superimposed-slab-shear-walls structure[J].Engineering Mechanics, 2012,29(6):196-201.
- [11] 王宇亮,崔洪军,张玉敏,等.不同开缝形式的软钢阻尼器受力 性能分析及试验研究[J].工业建筑,2019,49(10):170-174.
 WANG Yuliang,CUI Hongjun,ZHANG Yumin, et al. Analysis and experimental research on mechanical properties of mild damper with different slit forms[J].Industrial Construction,2019,49(10):170-174.
- [12] REINHARDT H W. Testing and monitoring techniques for impact and impulse loading of concrete structures[C]// Concrete Structures under Impact and Impulsive.Berlin,1982:65-87.
- [13] 建筑抗震试验规程:JGJ/T 101-2015[S].北京:中国建筑工业 出版社,2015.

Specification for Seismic Test of Buildings: JGJ/T 101-2015 [S].Beijing:China Architecture & Building Press, 2015.

[14] 李敏.带耗能装置开缝剪力墙的设计研究[D].南京:东南大 学,2017.

> LI Min.Study on the design method of silt shear walls with metal dampers[D].Nanjing:Southeast University,2017.

[15] 温沛纲,徐明江.带缝钢板剪力墙抗侧刚度和承载力的计算

[J].广州建筑,2006,34(4):14-17.

WEN Peigang, XU Mingjiang. The lateral stiffness and loadcarrying capacity computation of steel shear walls with slits [J].Guangzhou Architecture,2006,34(4):14-17.

- [16] 陆金钰,范圣刚,闫鲁南,等.带缝钢板剪力墙弹塑性简化分析 模型[J].土木建筑与环境工程,2013,35(2):46-51. LU Jinyu, FAN Shenggang, YAN Lunan, et al. Simplified elasto-plastic analytical model for stiffened steel plate shear wall with slits[J].Journal of Civil, Architectural & Environmental Engineering,2013,35(2):46-51.
- [17] 滕军,马伯涛,李卫华,等.联肢剪力墙连梁阻尼器伪静力试验 研究[J].建筑结构学报,2010,31(12):92-100.
 TENG Jun, MA Botao, LI Weihua, et al. Pseudo-static test for coupling beam damper of coupled shear wall structure[J].
 Journal of Building Structures,2010,31(12):92-100.
- [18] 郭兰慧,马欣伯,张素梅.两边连接开缝钢板剪力墙的试验研究[J].工程力学,2012,29(3):133-142.
 GUO Lanhui, MA Xinbo, ZHANG Sumei. Experimental research on steel plate shear wall with slits[J].Engineering Mechanics,2012,29(3):133-142.
- [19] 孔子昂,王海,施唯.带缝钢板阻尼器受力性能试验研究[J]. 土木工程学报,2015,48(9):11-22.
 KONG Zíang, WANG Tao, SHI Wei. Experimental study on mechanical properties of steel dampers with slits[J]. China Civil Engineering Journal,2015,48(9):11-22.