玛曲断裂带土壤气汞、氡地球化学特征

赵振燊¹,张 慧^{1,2},苏鹤军^{1,2}

(1. 中国地震局兰州地震研究所,甘肃 兰州 730000;

2. 中国地震局地震预测研究所兰州科技创新基地,甘肃 兰州 730000)

摘 要:根据汞、氡土壤气在断层上的形成机制,分析了玛曲断裂带土壤气中汞、氡地球化学异常特征,并依据异常判断了断层的位置、产状、性质。与断层的实际剖面所反映的断层规模与性质基本 耦合。为评价活断层提供了有益的参考。

关键词:玛曲断裂带;土壤气;活动断层;汞、氡;地球化学特征;异常 中图分类号:P641.3 文献标识码:A 文章编号:1000-0844(2011)04-0376-04

The Geochemical Features of Mercury and Radon on Maqu Active Fault

ZHAO Zhen-shen¹, ZHANG Hui^{1,2}, SU He-jun^{1,2}

(1. Lanzhou Institute of Seismology, CEA, Lanzhou 730000, China;
2. Lanzhou Base of Institute of Earthquake Science, CEA, Lanzhou 730000, China)

Abstract: According to the forming mechanism of soil gases above faults, the abnormal geochemical features of mercury and radon on Maqu active fault are analyzed. The position, occurrence and mechanical property of Maqu active fault are determined by the abnormal geochemical features, and which are consistant with the scale and characters of the fault from the fault section. The conclusions provided a useful reference for active faults evalution.

Key words: Maqu fault; Soil gases; Active fault; Mercury and Radon; Geochemical feature; Anormaly

0 引言

玛曲断裂带属于东昆仑活动断裂带的东段。断 裂西起玛沁盆地北侧,以玛沁盆地与东昆仑断裂带 的托索湖一玛沁段左阶斜接,向东经肯定那、西贡 周、西科河南岸、唐地、玛曲,沿黑河南岸穿过若尔盖 草地向东,直至岷山北端求吉附近,长约 330 km^[1]。 笔者此次化探场地主要集中在玛曲段,位于玛曲县 城南侧。该段走向 285°~290°,倾向 NE,倾角 70° ~86°,断面平直光滑,沿断裂有一系列古地震形变 遗迹,为1条发震断层(青海省地震局等,1999)。 断裂在地貌上主要表现为正断裂陡坎^[2]。玛曲段晚 第四纪的活动性非常强烈,晚更新世晚期至今的平 均水平走滑运动速率达 10.15±0.34 mm/a^[3]。

目前国内外利用断层气氡、汞地球化学特征进

行活动构造的研究发展迅速,已得到地震地质界的 广泛重视和应用^[4-6]。断层气的测量在活动构造方 面的应用,可分为以下几个方面:(1)利用断层气异 常特征确定断层的性质;(2)确定隐伏断层,以及断 层活动性研究;(3)断层分段性的研究。与其他手段 相比,断层气测量具有易操作、经济、快速和易流动 观测等优点^[7-8]。

本文研究的主要内容是用断层气测量方法进行 野外现场勘测,分析每条测线上汞、氡的地球化学特征;主要目标是分析玛曲断裂土壤气氡、汞的地球化 学特征及其与活动构造的关系;研究重点是利用土 壤氡、汞的异常分布特征来研究断层活动性特征。 在此基础上为今后该地区流体台网优化布设、流动

收稿日期:2011-04-13

基金项目:中国地震局地震预测研究所基本科研业务项目(A88-5);中国地震局兰州地震研究所论著编号:LC2011052 作者简介:赵振燊(1986-),男,四川人,硕士,主要从事地震地下流体研究.

第4期

观测网络建设以及地下流体前兆异常提供背景资料。

1 断层土壤气组分氡、汞地球化学行 为

地球是一个复杂的开放的系统,地壳放气是岩石圈与大气圈进行物质、能量、信息交换的一种重要 形式。地壳中断裂带是地壳逸出气体的通道之一。 地壳逸出气测量的气体组分有氡、汞、He、CO₂、H₂、 As、Sb、Bi、B等。氡、汞是其中常用的两种气体组 分。

1.1 氡地球化学行为

氡是一种放射性气体,是惰性气体族(He、Ne、 Ar、Kr、Xe、Rn)中的最后一个元素,也是气体中最 重的一个元素。氡是镭核衰变的中间产物,有4个 同位素,²²² Rn 和²¹⁸ Rn 是铀衰变产物;²¹⁹ Rn 和²²⁰ Rn 分别是锕系和钍系衰变产物。其中主要的是²²² Rn, 它的半衰期为 3.825 d,衰变常数为 2.097×10⁻⁶ S; α 粒子能量是 5.481 MeV,在空气中的射程低于 4. 04 cm^[9]。

氡气在一定压力差、温度差、梯度差下,从下往 上迁移,在迁移的过程中由于所通过的岩层岩性及 构造环境不同,在地下形成不同的氡、汞气聚集。含 有镭或其他某些元素的固体物体向外部介质自发地 或人为地释放放射性气体氡的过程,称为射气作用。 氡的消散通过这种作用经过断裂通道向大气释放。 在断裂带的出露位置及其上盘的土壤中氡的含量较 高,形成异常区域。

气象因素及条件对氡气体的消散具有明显的影响。研究结果表明(吴慧山,1995,牟保全,1999)气 压与氡的消散量表现为负相关。气压降低,消散量 将增大;土壤的温度特别是温度的变化量,能够影响 氡的消散量,夜间土壤中氡的射气通量最大,即为日 间平均值的1.5~2.0倍。降雨对氡的消散的影响 较为复杂:少量降雨导致射气扩散系数增大及氡的 受压,因此消散量增高;连续降雨时,由于土壤中的 毛细管被堵塞,氡的消散量降低。另外,吴慧山 (1995)将毛细管对氡射气的吸附作用导致的物质射 气能力的下降做出了机理解释。

1.2 汞地球化学行为

汞是常温下唯一呈液态的金属。汞具有两个明显的特性:热敏性和高渗透性。汞在常温下具有明显的蒸汽压,还具有极强的穿透能力。汞的化学性质比较稳定,在常温的干燥气体中是一种稳定的元

素,只有在高温时与氧发生反应。

地幔物质在长期分异过程中由于蒸气作用而形 成汞,常常沿深部断裂发生迁移,断层土壤气中汞的 来源以及汞自地壳深部向地表的迁移机理是利用断 层气开展活断层探测的理论基础。汞迁移主要是靠 渗透一扩散和对流两种方式,其长距离迁移机理与 氡一样。汞具有较强的渗透能力,因而汞的垂直扩 散距离比氡的大得多。研究结果认为,地震孕育过 程中,震源附近应力集中,汞蒸气逐新增加并聚集在 深大断裂带附近。在高温和压力作用下,汞蒸气有 可以沿深部断裂或岩石裂隙向地表迁移,当穿过上 覆不同介质覆盖层时,汞蒸气被吸附、吸留或溶解期 间形成汞异常,使地震活动区介质中汞含量明显高 于外围地区^[10]。

2 测线布设和测量方法

2.1 测量对象和取样方法

测量对象有测汞、测氡两项。汞测量采用 JM -4 数字金膜测汞仪,具有体积小、轻便、灵敏度高 等特点,最低检出限为 10⁻² ng;氡的测量采用 FD-3017RaA 测氡仪,为一种瞬时测氡仪器,极限探测 灵敏度为 0.37 Bq/L。

取样方法是:首先用钢钎打一个导向眼插入取 样器,用橡皮管将 FD-3017RaA 测氡仪与取样器 连接,排出橡皮管内及取样器内的残留气体,然后开 始正式取氡样。取样体积为 1.5 L。完成氡的取样 后,再将取样器与 JM-4 数字金膜测汞仪及大气采 样仪连接,流速 0.5 L/min,抽气时间 2 min,取样体 积为 1 L。

2.2 测线布设

根据前人的研究结果,玛曲县城外的断裂带在 卫星片上影像清晰,总体方向呈 SEE 方向展布。因 此在与该断裂近于直交,由北向南布设了 3 条测线。 每条测线上测点间距为 10 m,当测到异常点时重复 测量,并进行加密观测点距为 5 m。同时在高值点 附近再布设一条平行短测线,点距 5 m。3 条测线 分别是:①玛曲东侧剖面,长约 270 m,共 34 个测 点;②玛曲中间剖面,长约 300 m,共 36 个测点;③ 玛曲西侧剖面,长约 280 m,共 29 个测点(图 1)。

3 玛曲县断裂带土壤气汞、氡测量结果

3.1 断层气影响因素、异常特征以及异常识别

由于汞、氡异常的形成与活断层的规模大小,活

动程度,断层的倾向、倾角,破碎带宽度,充填物的透 气性、覆盖层厚度等因素有关,同时氡、汞受气候条 件、地貌、植被和人类活动影响。

图 1 玛曲活断层地球化学测线分布示意图 Fig. 1 Distribution map of geochemical survey lines across Magu active fault.

气汞和气氡异常在平面上呈线性条带状延伸, 其延伸方向和断裂破碎带位置相吻合;在测线剖面 方向上,断层气异常多呈尖峰状。在某些断裂上,气 体异常以多峰谷形出现,常常和断裂带的破碎宽度 有关。特别是倾角较缓的断层,在断层上盘羽状节 理和裂隙往往都比较发育,地下气体可由此向上运 移和富集,因此形成了较大宽度的气体异常。

3.2 玛曲断裂带土壤气汞、氡测量结果

图 2 为玛曲 HT1 测线汞、氡浓度异常曲线。由 图可知:汞浓度曲线出现 1 组峰值异常形态,其最大 值 0.171 45 ng/L,是背景值 0.113 3 ng/L 的 1.5 倍;氡浓度曲线也出现 1 组峰值异常形态,其最大值 15.406 3 Bq/L,是背景值 3.124 6 Bq/L 的 4.9 倍。 其中,汞值较高测点为第 6、7、25 测点,氡值较高测 点为第 26、27 测点。并且氡的异常范围与汞异常测 点第 25 个点有相邻,具有对应的异常关系。

图 3 为玛曲 HT2 测线汞、氡浓度异常曲线。由 图可知:汞浓度曲线出现 1 组峰值异常形态,其最大 值 0.240 03 ng/L,是背景值 0.128 9 ng/L 的 1.9 倍;氡浓度曲线也出现 4 组峰值异常形态,并且相邻 较 近,在 10 ~ 25 m 的 范 围 内,其 最 大 值 25.395 Bq/L是背景值 9.241 Bq/L 的 2.7 倍。在 点距 100 m 处有挖出的断层剖面,氡的 4 组峰值的 影响范围约为 100 m,都是在出露的断裂带附近。

图 2 玛曲 HT1 测线汞、氡浓度曲线

Fig. 2 The abnormal variation curves of ardon and mercury along HT1 line across the Maqu fault.

图 3 玛曲 HT2 测线汞氡浓度曲线

图 4 为玛曲 HT3 测线汞、氡浓度异常曲线。由 图可知:汞浓度曲线出现 1 组峰值异常形态,其最大 值 0.182 88 ng/L,是背景值 0.093 2 ng/L 的 2 倍; 氡浓度曲线出现 2 组峰值异常形态,其最大值 10.665 9 Bq/L,是背景值 5.014 8 Bq/L 的 2.1 倍。 且氡的第 2 组异常值与汞的异常高值比较相邻,具 有对应的异常关系。断层剖面在 200 m 处,汞、氡 异常区域都发生在断层的上盘且靠近出露的断层剖 面。

第4期

在进行测量数据处理时,我们采用平均值与均 方差的概念,其中汞的平均值与均方差分别用 K 和 δ_1 表示,氡的平均值与均方差分别用 R 和 δ_2 表示, 我们取平均值作为背景值,并取 K + δ_1 与 R + δ_2 分 别作为土壤气汞、氡异常下限,土壤气中所测汞、氡 的含量的单位分别是 ng/L 和 Bq/L。3 条测线的土 壤气中汞、氡的结果见表 1。

测线	K	δ_1	$K + \delta_1$	R	δ_2	$R + \delta_2$
HT1	0.113 3	0.024 9	0.138 2	3.124 6	4.6134	7.738 0
HT2	0.128 9	0.038 0	0.166 9	9.241 0	10.087 0	19.328 0
HT3	0.0932	0.0431	0.136 3	5.014 8	5.123 5	10.138 3

表1 测线土壤气汞、氡的数据分析

综上所述,HT1、HT2、HT3 剖面是确定的异常 剖面,正好处于断层剖面附近。其中,HT1 剖面和 HT3 剖面的异常区域都在断层的上盘。HT2 剖面 横跨了断层,异常区域在断层的两盘都有分布,在第 1 组峰值和第 2 组峰值之间出现了一个低值,可能 是因为该处居民居住导致地层的不均一性而产生的 异常低值点。总体来说,玛曲县断裂带的研究场地 地质条件比较均一,受人类活动等因素影响较小,得 出的实验结果有一定的参考性。在研究区域,汞背 景值偏低,为 0.111 8 ng/L,氡背景值偏高,为 5.793 5 Bq/L。汞背景值偏低可能是地下潜水对测 汞仪的取气都存在着影响,也可能是潜水对毛细管 屏蔽引起的。出现较高的氡背景值可能是因为第四 纪覆盖物与深部基岩形成良好的贯通,并且在一定 程度上反映了断层的活动性较强。 (1) 玛曲县断裂具有明显的土壤断层气异常显示,在3条测线上均出现了峰值异常区域。从测量的结果来看,3条剖面所出现的异常区域都发生在断层的上盘或上、下盘,与断层出露位置具有很好的对应关系。

(2) 深部地下流体沿着断裂带向上运移和富 集,在断裂带上方覆盖形成了漏斗形的土壤气体异 常晕。因此土壤气汞、氡的异常形态为:低一较高一 高一较高一低的峰值形态,HT2 剖面 100 m 处的异 常低值点为一单点异常,主要是探测过程中的干扰 因素造成的。

(3) TH2 剖面中,氡值异常区域分布广泛,跨 过了断层的两盘,在下盘有1个异常区,在上盘有3 个异常区。上盘的3个异常区域,在测线剖面上分 布范围约为80 m,相对断层规模较小,反映了该断 层是倾角较陡的正断层,这与前人得出的断层倾角 为70°~80°相一致。

(4) 玛曲断裂所在区域为草原,地质条件均一, 受外在因素影响小,其氡背景值较高,约为 5.793 5 Bq/L,异常也比较明显,在一定程度上能反映该断 裂的活动性。并且有利于定期流动观测,为以后检 测该断裂的活动性提供一种经济而又实用的监测手 段。同时,为今后该地区流体台网优化布设、流动观 测网络建设以及地下流体前兆异常提供背景资料。

[参考文献]

- [1] 何文贵,熊振,袁道阳,等.东昆仑断裂带东段玛曲断裂古地震 初步研究[J],中国地震,2006,22(2):126-134.
- [2] 李陈侠,徐锡伟,闻学泽,等.东昆仑断裂东段马沁一玛曲段几 何结构特征[J].地震地质,2009,31(3),441-458.
- [3] 马寅生,施炜,张岳桥,等. 东昆仑活动断裂带玛曲段活动特征 及其东延[J].地质通报,2005,24(1):30-35.
- [4] Oktay Baykara. Measurements of radon emanation from soil samples in triple-junction of North and East Anatolian active faults systems in Turkey[J]. Radiation Measurements, 2005, 39:209-212.
- [5] 杨少平. 壤气中氡汞联测在监测汶川余震中的作用[J]. 物探 与化探,2010,34(6):778-786.
- [6] 张慧,张新基,苏鹤军,等.兰州市活动断层土壤气汞、氡地球 化学特征场地试验[J].西北地震学报,2010,32(3):273-278.
- [7] 高清武. 断层气测量在地震科学中的应用[M]. 北京:地震出版 社,1991:122-127.
- [8] 孟广魁,何开明,班铁,等. 氡、汞测量用于断裂活动性和分段的研究[J]. 中国地震,1997,13(1);43-51.
- [9] 常桂兰. 氡与氡的危害[J]. 铀矿地质,2002,18(2);122-128.
- [10] 康春丽,杜建国. 汞的地球化学特征及其映震效能[J]. 地质 地球化学,1999,27(1):79-84.

4 认识与讨论