# 自组织临界现象和重整化群方法在中期 地震预报中的应用研究<sup>·</sup>

郑文衡 郭大庆 石特临

(国家地震局兰州地震研究所,兰州 730000)

摘要 本文讨论了大震前的自组织临界现象,认为在大地震发生前地壳处 于自组织临界状态。不同规模的地震反映地壳中不同尺度裂隙的产生或扩展。设 po,p1,…,pn是不同尺度岩石块体中产生或扩展裂隙的概率,根据重整化群理论, 数列{po,p1,…,pn}有极限。其极限值可能是0或1。选定一个临界值p°,如果 po> p°,则 pn→1;反之,若 po<p°,则 pn→0。在地震平静期内,必有 po<p°,而在地震活 跃期内,po>p°。在本文中,作者根据地震资料研究了青藏高原北部地区的临界概 **率 p°值,得到大震前** po 值大约为 0.3-0.8,平静期 po 约为 0.1-0.2,所以 p°值 **约为 0.2-0.3。利用重整化群模型**给出了 p°为 0.2324, 预报期限为 3 年。

关键词: 重整化群变换; 临界概率; 强震; 中期地震预报

1 重整化群方法的基本思想

**在研究动力学系统由周期运动向混沌运动演变过程中**,是以倍周期分岔方式通过极限 点而实现的。在这个临界点附近系统行为具有相似性,或标度律,可用重整化群方程描述。

图 1 是一维单峰映射倍周期分岔过程,第一周期超稳定点  $\lambda_0$  处的 f( $\lambda_0$ ,x)与第二周期  $\lambda_1$ 处的 f<sup>2</sup>( $\lambda_1$ ,x)的中间部分相似,也与 2<sup>2</sup> 周期超稳定点  $\lambda_2$  处的 f<sup>(4)</sup>( $\lambda_2$ ,x)的中间部分相似,一 般地存在着

$$f^{(2n)}(\lambda_n, x) \sim f^{(2n+1)}(\lambda_{n+1}, x)$$
(1)

**相似性。当 n→∞时**,这种相似性将是严格的。设  $\lambda_n$  处 f<sup>(n)</sup>( $\lambda_n$ ,x)是  $\lambda_{n+1}$ 处 f<sup>(n+1)</sup>中间部分的  $-\alpha$  倍, 负号表示 f<sup>(2n)</sup>和 f<sup>(2n+1)</sup>相似部分反相。则

$$lim(-\alpha)^n f^{(2n)}(\lambda_n, x/\alpha^n)$$
(2)

趋向某一极限函数  $g_0$ 。推而广之,可以把  $\lambda_{n+r}$ 处的  $f^{(2n)}$ 与  $\lambda_{n+r+1}$ 处的  $f^{(2n+1)}$ 来比较,它们亦有 相似性。所以一般定义

$$g_r(x) \equiv \lim(-\alpha)^n f^{(2n)}(\lambda_{n+r}, x/\alpha^n)$$
(3)

如果这个极限存在,它表明,把 f<sup>(2n)</sup>( $\lambda_{n+r}$ ,x)中间部分的图形在横向与纵向都放大( $-\alpha$ )<sup>n</sup> 倍,那么对于不同的 n 它们都有相同的形状。这样.

<sup>\*</sup> 本文是郑文衡的硕士学位论文的一部分。该同志现在国家地震局地餐研究所工作。

| 2                            | 西北地震学报                                     | 第16卷 |
|------------------------------|--------------------------------------------|------|
|                              | $g_{r-1}(x) = - \alpha g_r(g_r(x/\alpha))$ | (4)  |
| 对任意函数 f(x)定义算                | 符L                                         |      |
|                              | $Lf(x) = -\alpha f(f(x/\alpha))$           | (5)  |
| 则: $g_{r-1}(x) = Lg_r(x)$ 。算 | 符L就是重整化算符,过程是重整化过程。                        |      |

取 r→∞的极限limg<sub>r</sub>(x) $\equiv$ g(x),显然 g(x)满足算符 L 的不动点方程:

$$g(x) = Lg(x) \equiv -\alpha g(g(x/\alpha))$$
(6)

这个方程具有标度不变性,即如果g(x)是上式的解,那么cg(x/c)也是上式的解。其中c是 任意常数。因此 g(0) = 1, 另外, 据定义 x = 0 为 g(x) 的极值点。即 g'(0) = 0。综合以上, Feigenbaum 重整化方程为:

$$g(x) = Lg(x) \equiv -\alpha g(g(x/\alpha))$$

$$g(0) = 1, \quad g'(0) = 0$$

$$(7)$$

将古登堡---里斯特经验公式 log N = a - bM做简单变换得:

$$\log \frac{N}{a'} = \log N' = \ln N'' = -b'M$$

设重整化方程  $\alpha = b'$ ,则  $\ln N'' = -b' M$ ,满足重整化方程,

$$g(x) = Lg(x) = -b'(b'(M/b')) = -b'M$$
(8)



图 1 一维映射的分岔图

Fig. 1 The period-doubled bifurcation of one-dimension mapping.

对于地震活动的实际观测,初始条 件的满足尚须进一步讨论。由此可 见,地震活动的统计结果处于非线 性临界状态,地震频次和空间尺度 的函数关系是自相似的,具有标度 律。前人的研究结果b=1/2D已被 实验所证实。

大地震前自组织临界 2 状态

整个岩石圈是一个大的相互 作用的系统,其中不同尺度的岩石 圈块体通过边界的耦合,相互作用, 不断发生地震以调整到临界状态。 因此,一次大地震的发生和发展与 中小地震发生之间的关系是分形 的。据实际观察,一次大地震之前在 数百或数 10 公里范围内会发生中 等强度地震增强的现象,亦会发生

地震沿断层或空间上的迁移和相互关联的现象,这就是所谓的长程关联行为。此外,无论是 空区和空段,还是条带与小地震集中区都是自组织行为的局域表现。

为了进一步说明自组织临界现象,本文以一维沙堆模型(图 2)为例进行讨论。 所谓沙堆模型,即考虑圆桌上一堆沙子,将沙子随机地撒在沙堆上,直到沙堆的斜率达

郑文衡等:自组织临界现象和重整化群方法在中期地震预报中的应用研究 3 第2期

到临界角度,这一最大的临界角度使沙堆保持一定形状,而没有沙粒滚下。在沙堆的平均斜 率达到最大时,继续撒砂粒,从而将会触发砂堆发生各种尺度的滑坡,甚至发生"雪崩"。这种

处于自组织临界状态的沙堆模型产生的滑坡是分 形的。因此,分形是临界状态的一种标志。

如图 2 所示,一维沙堆模型是置沙子在一个 格座上堆到一定整数高度,并取局部高度作为动 力学变量,使系统按如下两条规则进行:

(a)加一粒沙子:  $Z_n \rightarrow Z_n + 1$ 

 $Z_{n-1} \rightarrow Z_{n-1} - 1$ (b)当 Z<sub>n</sub>>Z\*(阈值)时一粒沙子滑落:  $Z_n \rightarrow Z_n - 2$ 

> $Z_{n+1} \rightarrow Z_{n+1} + 1$  $Z_{n-1} \rightarrow Z_{n-1} + 1$

图2 一维沙堆模型 Fig. 2 The model of one dimension sand pile.

假设边界条件  $Z_0 = 0, Z_N \rightarrow Z_N - 1$  $Z_{N-1} \rightarrow Z_{N-1} + 1$ 

当 Z=Z\*时,沙堆的位形是最稳定的,即达到了自组织的临界状态。这一状态即敏感又 鲁捧。它可以因为任何局域性的扰动而牵动全系统,但又不会因为任何干扰而改变最小稳定 状态。二维沙堆模型最小稳定位形就不会出现鲁捧特性,一个局部的微扰就有可能触发一次 贯穿整个系统的"雪崩"。值得注意的是,每加一粒沙子,从边缘流出的沙粒数目不固定。不 过系统最后达到一种统计上的定态,每加一粒沙子的平均后果是从边缘流出一粒沙子。这就 是自组织临界状态。由此引伸到地震预报中,可以认为,合理的统计预报方法在预报实践中 是有一定意义的。

自组织临界现象不同于分形与混沌,分形的概念往往集中在几何刻画上;混沌理论是研 究非线性动力学系统的时间复杂性,主要讨论少数自由度系统。

地震活动的自组织行为是一种群体行为,而重整化群方法正是处理集体行为的一种数 学方法。

3 重整化群方法在强震的中期预报中的应用

应用重整化群方法首先要确定点阵常数 a、观测尺度和相关长度。三者中只有观测尺度 可在一定范围内自由地变动。它们的关系满足:a<<观测尺度≤相关长度。我们将观测到的 大震前的中小地震的增强区域作为观测尺度,岩石的结构作为点阵尺度,相关长度取远大于 地震增强区域的外区域地震的相关距离。

将观测区域按  $s_n = (\frac{1}{4})^n s_r$  形式分成若干个小区域,最后分得的小区域是元胞。利用元 胞发生某低震级地震概率,经多次迭代确定观测区域发生7级或更大地震的临界点,该临界 点可为大地震发生的定量判定准则。

图 3 示出了一阶划分结果,以此来研究递推关系。在图 3 中共有 5 种构形,阴影部分为 发生相应震级地震的区域,空白的为空区,设 p。为能发生相应震级地震的概率,则(1-p。) 为不发生相应震级地震的概率。则5种构形发生更高一层次震级地震的概率分别为:(1-



$$p_0)^4; p_0(1-p_0)^3; p_0^2(1-p_0)^2; p_0^3(1-p_0); p_0^4$$

如果假定4个单元中有2个发生 了相应层次的地震,则下一层次可能 发生更大震级的地震,则此时的概率 为:

$$p = 6p_0^2(1 - p_0)^2 + 4p_0^3(1 - p_0) + p_0^4 = 6p_0^2 - 8p_0^3 + 3p_0^4$$
(9)

利用 Logist 一维映射研究递推关系, 可将上式变成:

$$x_{n+1} = 6x_n^2(1 - x_n)^2 + 4x_n^3(1 - x_n) + x_n^4 \quad (10)$$
  
图 4 是标准一维映射的三种结

果,标准一维映射的形式为: $x_{n+1} = ax_n$ 



#### 图 3 4 个元素构成元胞的 5 种构形 Fig. 3 The five configurations of a cell consisting of four elements.

(1-x<sub>n</sub>).a 是控制参数.对应于不同的 a 值将分别出现固定点、极限环和混沌现象。



图 4 标准一维映射的三种结果 a. 当 0<a<1 时,  $x_{n+1}$ 与  $x_n$  迭代趋向固定的  $x_i$ =0; b. 当 1<a<3 时,出现极限环,当 a>3 时出现混沌现象 Fig. 4 Three results of the logistic map. (10)式映射结果见图 5。图 5 中 p\*是临界点,是函数  $x = 6x(1-x)^2 + 4x^3(1-x) + x^4$ 

的解。固定点的解有三个,分别为0、0.2324和1,其中0和1是稳定点,0.2324是不稳定点。 稳定与不稳定取决于 df/dx 是否小于1或大于1。从图5可以看到.当 p。落在 p<sup>•</sup>左边时.经 几次映射后,趋于固定点0,即 p,最后趋于零;当 p。落在 p<sup>•</sup>右边时.经几次选代.p.→1。

图 6 是映射

$$p_{n+1} = 4p_n^3 - 3p_n^4 \tag{11}$$

的 logistic 图,临界点 p<sup>•</sup>等于 0.7659,含义为在 4 个单元中有 3 个发生了地震事件,下一阶段才有发生更大地震的可能。



(1)经验地确定观测尺度的大小,将区域以某种方式划分为多层次的小区域网格。 (2)统计确定各小区域发生某级地震的 po,和 7级以上大震的发生过程作对比分析,确 定相应区域的发震震级。

(3)确定 p\*,建立 p<sub>n+1</sub>-p<sub>n</sub> 的映射关系。

青藏高原北部地震区中期地震预报的临界概率 p\*的研究 4

青藏高原北部地震区是7级以上地震的多发区,地震主要发生在祁连山断裂和舒玛 断裂上。将青藏高原北部地震区分成两个区,即祁连山地震区和舒玛断裂地震区,如图7所 示。



图 7 青藏高原北部地震区和 研究区域划分



第2期

祁连山地震区范围为东经 90<sup>-</sup>-107<sup>-</sup>,北纬 35<sup>-</sup>-40<sup>-</sup>。小单元阵列数的划分依赖于地 震震级以及所研究区域的地震分布密度。一般而论,如果考虑到更小的震级,单元应该划得 更小一些。震级较大的地震对应于较大的单元,较小的地震对应于较小的单元。根据具体情 况,将祁连山断裂孕震区划分成 16×16 个小单元。

由于对于小地震的监测误差较大,所以只统计 4.0 级以上的地震。对祁连山孕震区,分 别统计了平静期(1980-1985年)和大震前期(1985-1990年)的情形。统计时,均以三年为 间隔,以一年为步长滑动。图 8 和图 9 分别为平静期和大震前期头一个三年期地震分布。计 算结果如表 1 和表 2 所示。









表1 祁连山孕震区平静期 P。值

| 时      | 间     | 等效频次f  | 概率 P₀=f/25 |
|--------|-------|--------|------------|
| 1980 - | -1982 | 80. 19 | 0.3132     |
| 1981 - | -1983 | 39. 98 | 0.1562     |
| 1982-  | -1984 | 78.13  | 0.3052     |
| 1983-  | 1985  | 74.44  | 0.2908     |

表 2 祁连山孕震区大震前期 P。值

| 时间        | 等效频次 f | 概率 P₀=f/256 |
|-----------|--------|-------------|
| 19851987  | 215.38 | 0.8413      |
| 19861988  | 256.34 | 1.0010      |
| 1987—1989 | 144.21 | 0. 5633     |
|           |        |             |

注:Po=1.0010>1,应视为统计涨落

由统计得祁连山孕震区平静期 $\overline{p_0}=0.2664.$ 在大震前期 $\overline{p_0}=0.8015$ 。根据上述结果,选择临界概率 p \* = 0.2324,可以满足平静期 $\overline{p_0} < p^*$ ,而在大震前期 $\overline{p_0} > p^*$ 。

对于舒玛断裂孕震区,取90°-107°E,32.5°-38.5°N范围。这个区域与祁连山孕震 区有较多的重叠。根据其地震分布密度,将该区域划分成32×32网格。仍以三年为间隔,一 年为步长滑动,统计等效于4.0级的等效频次,得到其平静期和大震前期的统计结果,如表 3 和表4所示。

表 3 舒玛断裂孕震区平静期 P。值

| 时间        | 等效频次 f  | 概率 P₀=f/1024 |
|-----------|---------|--------------|
| 1980—1982 | 298. 63 | 0. 2910      |
| 1981-1983 | 306. 77 | 0.2996       |
| 1982-1984 | 132.97  | 0.1299       |
| 1983—1985 | 111. 23 | 0.1086       |

表 4 舒玛断裂孕震区大震前期 P。值

| 时间        | 等效频次 f  | 概率 P₀=f/1024 |
|-----------|---------|--------------|
| 1985-1987 | 283. 32 | 0.2767       |
| 1986—1988 | 438.47  | 0.4282       |
| 1987 1989 | 313.66  | 0.3063       |

由统计得舒玛断裂孕震区在平静期 $\overline{p_0} = 0.2073$ ,在大震前期 $\overline{p_0} = 0.3371$ 。同样表明,选择  $p^* = 0.2324$ ,满足平静期 $\overline{p_0} < p^*$ ,而在大震前期 $\overline{p_0} > p^*$ 。

为进一步验证这种确定 po 的方法,我们又分别计算了 1954 年、1937 年、1932 年各次大 震前期的 po 值。

对于 1954 年山丹、民勤大震,选 1949-1953 年的资料,由于两次大地震处在祁连山孕 震区,所以取 16×16 网格。结果如表 5 所示。其平均值p。=0.4367。有p。>p\*(=0.2324)这 样的关系。

表 5 山丹、民勤大震前 p。 值

| 时间        | 等效频次f  | .概率 Po=f/256 |
|-----------|--------|--------------|
| 1949—1951 | 57.09  | 0. 2230      |
| 19501952  | 147.00 | 0. 3742      |
| 19511953  | 129.73 | 0.3068       |

对于 1937 年阿拉克湖大震,选舒玛断裂 孕震区地震记录资料。由于在此之前有 1932 年的昌马 7.6级大震,因此,从 1933 年开始 统计,到 1936 年底,可得两组数据。统计结果 如表 6 所示。

其平均值p<sub>0</sub>=0.2819>0.2324。从表 5 和表6还可看出,p<sub>0</sub>在逐年变化,起初小于

临界概率,当它大于 p\*时,就对应随即而来的大震。

对于 1932 年昌马大震,考虑到其震前于 1927 年还发生过古浪大震,所以取 1928-

7

1931年的资料,用祁连山孕震区地震记录资料,得二组数据。统计结果如表7所示。

西北地震学报

表 6 阿拉克湖大震前 P。值

表7 昌马大震前 p。值

| 时间        | 等效频次 f  | 概率 P₀=f/1024 |
|-----------|---------|--------------|
| 19331935  | 190. 91 | 0. 1864      |
| 1934—1936 | 386.42  | 0.3774       |

| 时间          | 等效频次 f | 概率 P₀=f/256 |
|-------------|--------|-------------|
| 1928-1930   | 184.60 | 0. 7211     |
| 1929 - 1931 | 131.70 | 0. 5144     |

统计得p<sub>0</sub>=0.6178>0.2324。由于统计样本较少,昌马大震前 p<sub>0</sub>没有呈现由小到大的 变化,而且一直处在临界值以上。这可能与 1927 年古浪地震的影响有关。较之昌马地震对 五年后的阿拉克湖地震的影响,古浪地震对五年后的昌马地震影响更大,因为后二者处在同 一条断裂上,距离也较近。所以昌马震前 p<sub>0</sub>值初期较高,可以认为这是古浪地震的后效。

最后,我们统计了 1937 年阿拉克湖大震和 1990 年共和大震后的 p。值,用以进一步验证 p。作为判断大震发生依据的合理性。

由于阿拉克湖地震和共和地震均位于舒玛断裂孕震区的中央,而在祁连山孕震区的边缘,所以统计时取舒玛孕震区地震资料,同样采用 4.0 级等效频次,且同样划分 32×32 网格。

对 1937 年以后的地震资料的统计、计算结果如表 8 所示。结果表明,大震后 p。值降到 了临界概率以下,而且不断降低。也就是说,p。值较敏感地反映了大震的孕育、发生和震后 平静的过程。

表 8 阿拉克湖大震后 P。值

| 时间          | 等效频次 f | 概率 P₀=f/1024 |
|-------------|--------|--------------|
| 1938 - 1940 | 156.29 | 0. 1526      |
| 1939 - 1941 | 88. 94 | 0.08686      |
| 1940 1942   | 82.63  | 0.08069      |
| 1941 1943   | 6.31   | 0.006162     |
| 1942 - 1944 | 6.31   | 0.006162     |

对于 1990 年 4 月 26 日以后的资料,由 于时期短,以一年为间隔,半年为步长滑动 (最后一步,由于资料所限,仅滑动了四个 月)。为与三年期的平静期以及大震前期的统 计结果比较.将统计值乘以 3 来求取 po,这样 就仍采用 4.0 级等效频次以及 32×32 网格。 结果如表 9 所示。统计表明.震后 po 值开始 较高,随后迅速降低,降到临界值以下。

根据止述平静期、大震前期以及震后的 p₀值,可以选定一个较符合实际的临界值

表 9 共和大震后 P。值

| 时间                            | 等效频次 f | 概率 P₀=3×f/1024 |
|-------------------------------|--------|----------------|
| 19900427 199104 -27           | 111.97 | 0. 3280        |
| 1990- 10 -27-1991 -10 -27     | 63.75  | 0.1868         |
| 1991 - 04 - 27 - 1992 - 04 27 | 46.43  | 0.1360         |
| 199108-31-19920831            | 44.04  | 0.1290         |

\*数据资料截止到 1992 年 8 月 31 日。

P<sup>•</sup>.同时也就确定了相应的重 整化模型。在平静期 p<sub>0</sub> 值一般 小于 0.2324 或略大于此值。而 在大震前期 p<sub>0</sub> 值大于此值,即 0.2324 可以作为临界点 p<sup>•</sup>. 如果统计出的 P<sub>0</sub> 小于此值,则 比较安全;若 p<sub>0</sub> 大于此值时, 发生大震的概率则较大。

### 5 讨论和展望

地震活动的重正化群模型,在力学上可以用如下的"分形树"代表(图 10)。一束绳子,每 两根作为一个"细胞"。通过单元断裂概率可确定细胞的断裂概率。然后把细胞作为次级的 单元,如此循环下去。



图 10 应用于一个地震断层的重整化群分形树模型

Fig. 10 Illustration of the fractal tree model of the renormalization group for an earthquake fault.

每个基本单元受力 F,次级单元受力 2F,余类推。把 F 作为随机变量,得到绳受力断裂的概率分布。D.L. Turcotte 的研究认为<sup>[1]</sup>它服从 Weibull 分布:

$$p_0(F) = 1 - exp(-F/F_0)^n$$
 (12)

9

这里 F。是表示强度的参考值;n 是 Weibull 分布的"次数",(12)式表示"n 次 Weibull 分布"。 考虑二次 Weibull 分布

$$p_0(F) = 1 - exp[-(F/F_0)^2]$$

为导出零级细胞的断裂概率 p<sub>1</sub>,考察分形树断裂的构形。零级单元断裂概率记为 p<sub>0</sub>,不断裂的概率为(1-p<sub>0</sub>)。用 b 表示断裂,u 表示不断裂,则构形与相应概率如下:

$$\begin{bmatrix} bb \end{bmatrix} \qquad p_0^2 \\ 2[ub] \qquad 2p_0(1-p_0) \\ [uu] \qquad (1-p_0)^2$$

由于当其中一个单元断裂后,它所承受的力将转移到另一个单元上,因此会影响到剩下 的一个单元的断裂概率。为此要计算当其中一个单元断裂后,另一个单元断裂的条件概率, 这种情形存在如下构形

$$2[ub] \rightarrow [bb] \qquad 2p_0(1-p_0)p_{21} \\ 2[ub] \rightarrow [ub] \qquad 2p_0(1-p_0)(1-p_{21})$$

由得零阶细胞的断裂概率为

$$p_1 = p_0^2 + 2p_0(1 - p_0)p_{21}$$
(13)

根据条件概率定义,可得到

$$p_{21} = \frac{p_0(2F) - p_0(F)}{1 - p_0(F)} \tag{14}$$

经数学推导得

于是 同理





 $p_1 = 2p_0(1 - (1 - p_0)^4) - p_0^2$ 

p<sub>n+1</sub> = 2p<sub>n</sub>(1 - (1 - p<sub>n</sub>)<sup>4</sup>) - p<sub>n</sub><sup>2</sup>
 由此可求出不动点:x=0.x=0.2063,x=1。其中 x
 =0.x=1 是稳定不动点:|λ|=0<1;而 x=0.2063,</li>
 |λ|=1.619>1,为不稳定不动点。其迭代图如图 11
 所示。临界概率是 p<sup>\*</sup>=0.2063。

第16卷

同样,我们算出了一次、三次和四次 Weibull 分 布之下的重整化群变换不动点。结果列于表 10。

以上分形的推算,相当于断裂孕震构造的微观 模型,其中二次 Weibull 分布的结果比较接近于实 际统计结果。因此可选定二次 Weibull 分布来说明 断裂构造的力学机制较好。

前边基于地震的一维映射关系的分析和计算, 已得出临界概率为 0.2324,这相当于一个宏观模型。

微观和宏观模型得出的结果是很接近的。 根据以上研究,可得到如下几点结论:

表 10 各次 Weibull 分布的不稳定不动点

| Weibull<br>分布次数<br>n | P₀(2F)与 P₀(F)关系                   | 迭代公式                                      | 不 <b>稳</b> 定<br>不动点 |
|----------------------|-----------------------------------|-------------------------------------------|---------------------|
| 1                    | $P_0(2F) = 1 - (1 - P_0(F))^2$    | $P_{n+1} = 3P_n^2 - 2P_n^3$               | 0.5000              |
| 2                    | $P_0(2F) = 1 - (1 - P_0(F))^4$    | $P_{n+1} = 2P_n(1 - (1 - P_n)^4) - P_n^2$ | 0.2036              |
| 3                    | $P_0(2F) = 1 - (1 - P_0(F))^8$    | $P_{n+1} = 2P_n(1-(1-P_n)^4) - P_n^2$     | 0.0941              |
| 4                    | $P_0(2F) = 1 - (1 - P_0(F))^{16}$ | $P_{n+1}=2P_n(1-(1-P_n)^4)-P_n^2$         | 0.0000              |

(1)地震的孕育活动,是一个自组织现象,可用描述集体行为的重整化群方法来研究,这 种方法的使用的合理性在于地震的分形特征和大地震前的临界现象。

(2)临界概率值 p\*的确定有明确的物理意义.是描述 7 级以上大震前的定量化指标。p\* 的计算需在一定构形的基础上进行,构形的确定应从区域地震活动的特征出发.具有统计性 和经验性。

(3) 青藏高原北部地震区 p<sup>•</sup> 值在构形确定和网格划分确定的情况下为 0.2324。预报时间界在 3 年左右。

第2期

参考文献

- 1 Donald L Turcotte. Fractals and Chaos in Geology and Geophysics. New York; Cambridge University Press, 1992. 169-193.
- 2 Smalley R F, Turcotte D L and Sola S A. A renormalization group approach to the stick-slip behavior of faults. J. G. R., 1985, (90):1884-1900.
- 3 May R M. Simple mathematical models with very complicated dynamics. Nature, 1976, (261): 459-67.
- 4 Hao Bailing. Elementary Symbolic Dynamics. Singapore: World Scientific Press, 1989.
- 5 Harken H. 信息与自组织. 罗久里等译. 成都:四川科技出版社,1988.

## STUDY ON PHENOMENON OF SELF-ORGANIZED CRITICALITY AND RENORMALIZATION GROUP THEORY FOR MID-TERM EARTHQUAKE PREDICTION

Zheng Wenheng (Seismological Institute, SSB, Wuhan 430071) Guo Daqing, Shi Telin (Earthquake Research Institute of Lanzhou, SSB, Lanzhou 730000)

#### Abstract

Earthquakes with diverse sizes show the form or extension of diverse size fractures in the crust which is in a self-organized state. Let  $P_0, P_1, \dots, P_n$  be the probability of the form or extension of fracture in diverse size rock bodies with certain scales. According to renormalization group theory, sequence  $\{P_0, P_1, \dots, P_n\}$  has a limit that may be 0 or 1, and if  $P_0 = P_1 = \dots = P_n$ , the limit will get the constant  $(P^*)$ . The  $P^*$  is a critical value and if  $P_0 > P^*$  then  $P_n$  approaches to 1; if  $P_0 < P^*$ ,  $P_n$  approaches to 0.

 $P_0$  can be determined by statistics of earthquake catalogue. There should be  $P_0 < P^*$  during the earthquake quiet period, and  $P_0 > P^*$  during the active, therefore,  $P^*$  can be determined as the value between the quiet period  $P_0$  and the active  $P_0$ . Based on the conclution, a lot of renormalization models may be calculated and a model that its  $P^*$  is within the range is choosen to gain a exact  $P^*$  value. To predict earthquake, the  $P_0$  is worked out using recent data and judged if  $P_0 > P^*$  or not.

The data were calculated in northern district of Qinghai-Xizang plateau and the  $P_0$  is about 0. 3-0. 8 before strong earthquakes, while it is about 0. 1-0. 2 during quiet. Therefore, the P<sup>\*</sup> is about 0. 2-0. 3 and the model that was choosen gives a exact P<sup>\*</sup> as 0. 2324.

By this train of thought, a new way to predict strong earthquake is established.

Key Words: Renormalization group; Critical probability; Strong earthquake; Mid-term earthquake prediction