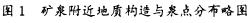
武山温泉地区地下水中氦的测量与 断层关系的初步探讨

1 武山温泉地区的地质概况

武山温泉位于甘肃省武山县洛门镇南 15km 处。在地貌上温泉周围地区属于中高山区,海拔在 1700m 至 2400m,地形较为陡峻,沟谷纵横交错。在构造单元上该地区属于巴颜喀拉地槽西秦岭褶 皱系,地处西秦岭北缘大断裂南侧。该区构造活动强烈,主要有走向为北西西向的温泉一甘泉深断 裂,走向北西的蔡家河一马长庄一岸谷里断裂及南北走向的聂河断裂等。从卫星照片上看还可能有 北东向构造⁽¹⁾。该区出露的基岩风化强烈,地表裂隙极为发育,这就构成了地下径流的良好通道。该 区泉水分为构造裂隙水、风化壳裂隙水、第四纪潜水等不同类型,而且出露地表甚多。在我们所研究 的 18km² 范围内共有 50 多个泉点出露(图 1)。由于有的泉水以混合型水出露地表,给分析工作造成了困难。


2 泉水的取样与测试结果

泉水用 5000ml 广口试剂瓶取样,在现场用真空脱气法取 2500ml 水中的溶解气,将脱出气用饱和食盐水密封在测氡用的扩散瓶中以备分析测试。用国产 SP—2305E 型气相色谱仪进行气样分析。与此同时,采集一份水样做水质分析。该区各泉水分析结果见表 1。

3 结果与讨论

从水样的分析结果和图 1 可以看出:

(1)除 15"泉外,凡是水溶气中有氦的泉,其位置都处于断裂带上或断裂带附近。为了便于说明问题,我们作一条 3km 长的剖面。该剖面穿过 6条断层以及 46"、21"、22"和 31"四个泉点(图 2)。图 2中给出了泉水中氦的测试结果,由图 2可以看出,氦含量较高的泉点都位于断裂带上。

- 1. 第三系; 2. 燕山期黑云母花岗岩;
- 3. 印支期似斑状花岗岩; 4. 地质界线;
- 5. 压性断裂; 6. 压扭性断裂; 7. 性质不明断裂;
- 8. 矿泉及低温温泉; 9. 风化壳裂隙泉及编号;
- 10. 第四系潜水泉; 11. A-A' 剖面位置

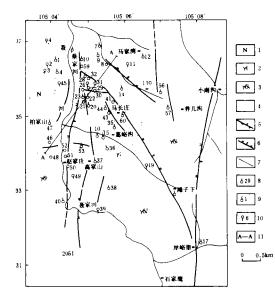


表 1

泉						化	7	组	157	音	重				
号	泉的类型	水温	H.	Rn	РН	F'	K+	Na+	Ca ⁺⁺	Mg [∺]	CO ₃	HCO ₃ -	SO ₄ =	Cl-	Br-
79		ű	体积%	贝克		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
1	风化壳裂隙泉	11.5	-	83. 5	7. 15	0. 82	1. 70	53. 4	40.1	14.45	0	271. 88	21.65	7.8	0.13
5	第四纪深水泉	15.5	_	52. 5	7. 45	3.8	8. 17	85. 0	7 4. C	3. 38	0	306. 20	49.78	40.0	0. 63
14	风化壳裂隙泉	12. 0		125.1	7. 70	0. 55	1.45	9.0	54.1	7. 80	0	194. 30	7.40	10. 9	0.08
15	风化壳裂隙泉	13.5	痕	1291.0	7. 75	1. 95	1. 00	7.8	46.7	5.77	0	167. 90	8. 74	5. 9	0.41
20	低温矿泉	22.5	痕	129. 9	7. 60	5. 48	1.60	32. 4	34.1	3. 04	0	163. 20	27. 70	9.8	0. 50
21	矿泉	47.5	0. 222	363. 2	8.85	17.48	1. 70	97. 6	3. 6	0. 27	14.88	119. 42	38. 40	13.65	0. 22
22	矿泉	27. 0	0. 080	545.0	8. 55	17.72	1.55	99. 4	6.0	0	7.80	136.0	43. 90	13. 70	0.46
23	矿泉	32. 5	0.199	360.4	9. 00	19. 50	1.45	121. 9	4.1	1.1	18. 35	150.6	63. 94	13. 21	0. 39
24	矿泉	33. 5	0. 053	73. 6	8.8 5	16. 60	1. 45	108.0	1.8	0	14. 68	128. 83	33. 04	15.61	0. 84
26	矿泉	33. 5	0. 278	1069. 7	8. 80	17. 88	1. 30	98.0	3. 0	0	7. 40	139. 90	96. 18	10. 37	0. 28
28	风化壳裂隙泉	20.0	_	69. 9	8. 15	8. 20	1.75	71.1	22.2	3. 70	0	178. 70	31. 30	12. 70	0.41
29	风化壳裂隙泉	15.5	_	34. 4	7. 65	1. 08	1. 60	26. 1	55. 1	10. 34	0	262. 30	34. 10	8. 80	0. 37
30	风化壳裂隙泉	15.0	_	17.8	7. 75	2. 14	2. 22	26. 7	51.1	10. 34	0	237.0	18. 10	7.8	0. 33
31	低温矿泉	19.0	0. 053	166.5	8. 00	4. 28	2. 32	50. 0	35.6	7. 80	0	233. 13	18.80	13. 66	0. 37
32	低泉矿泉	22.5	-	29. 2	8. 10	9. 88	1.90	98. 9	19.0	2.45	0	194. 28	69. 10	11. 70	0. 33
33	低温矿泉	18. 0	-	21.8	8. 15	9. 88	1. 70	81.5	15.0	9. 01	0	188. 50	31. 25	11.32	0. 23
34	风化壳裂隙泉	14.0	_	107. 0	7.85	1. 24	2. 22	23.0	54.6	11.86	0	256.44	10. 85	7. 80	0. 33
36	风化壳裂隙泉	10. 5	_	56.6	8. 15	0. 44	1. 55	5. 52	64.3	9.89	3. 67	223. 92	9. 13	11. 71	0. 56
41	风化壳裂隙泉	9. 5	_	114.3	7. 75	0.56	1. 70	15. 20	55 . 6	8.82	0	217. 67	8.40	7. 80	0. 25
43	风化壳裂隙泉	12.0	_	408.1	7. 55	0.46	1. 30	11.60	57.1	12.60	0	227. 66	13. 06	8. 45	0. 33
48	风化壳裂隙泉	14.0	痕	114.0	7. 75	0.64	2. 00	31.60	57.5	11.75	0	283. 60	12. 70	9.80	0. 43
50	风化壳裂隙泉	14.0	0. 055	98. 4	7. 90	6. 08	2. 20	48. 07	37.1	7. 69	0	201. 53	25. 46	12. 68	0. 56
51	风化壳裂隙泉	13.0	_	86. 2	7.85	4. 82	2. 40	41.86	31.1	9.06	0	209. 0	13. 45	11. 71	0. 50
53	风化壳裂隙泉	11.0	_	115.8	7. 85	0. 72	1.75	16.30	48.1	9.33	0	221. 4	4.96	7. 41	0. 12
55	风化壳裂隙泉	9. 5	_	153. 9	7.55	0. 81	0.70	6,00	42.6	4.56	0	139.9	9. 76	5. 85	0.11
58	风化壳裂隙泉	12.0	_	513. 2	7. 50	0.43	1.40	16.00	54.3	9. 94	0	223. 9	22.4	8. 80	0. 51

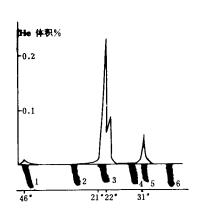


图 2 断层剖面上泉水中的氦含量

- (2) 从图 2 中可以看出,泉水中氦含量的多少与断层的大小无关。21 "泉所处位置的断层比 31 "和 50"泉所处的断层要小,但 21 "泉氦的含量(0.22 体积%)远比 31"泉和50"(0.05 体积%和 0.06 体积%)要高。
- (3)从测试结果看出,氦含量高的泉,其水中氡和氟的含量都较其它泉为高。
- (4)本项工作的结果说明,在断层上有深循环地下水出露的部位,地下水溶解气中氦的含量将高于非断层部位地下水中氦的含量。如果大面积进行地下水及土壤气中氦的测定,使我们完全有可能判定断层的存在和寻找隐伏构造,还可以确定构造的活动性,从而为圈定地震危险区提供依据。

(本文 1987 年 5 月 23 日收到) (国家地震局兰州地震研究所 **倪明康**)

参考文献

1 林思诚,等. 武山矿泉的水氡变化和松潘、礼县地震. 西北地震学报,1979,1(4).

STUDY ON THE RELATIONSHIP BETWEEN THE HELIUM IN GROUNDWATER AND FAULT IN WUSHAN HOT SPRING AREA

Ni Mingkang

(Earthquake Research Institute of Lanzhou, SSB, China)

(上接 86 页)

参考文献

- 1 李彤起,等.滇西地震实验场水化学前兆灵敏组分及灵敏穴位的初步探讨.西北地震学报,1990,12(2).
- 2 张炜,等.水文地球化学预报地震的原理与方法.北京:教育出版社,1988.

THE ANOMALOUS VARIATION FEATURES OF Hg PRECURSOR IN GROUNDWATER BEFORE MODERATELY STRONG EARTHQUAKES

Li Tongqi

(Earthquake Research Institute of Lanzhou, SSB, China)