一种新的非均匀断层模型及

其振幅谱的特征

牛志仁 李炳乾

(陕西省地震局)

摘 要

本文提出了一种弯曲断层面的非均匀断裂模型。我们把弯曲断层面简化为 锯齿形状,当每个锯齿上的滑动是均匀的,同时具有均匀的位错传播速度时, 可以得到问题的封闭形式的精确解。对于不同的齿数、齿倾角和场方位角,计 算了体波辐射的振幅谱。研究发现,弯曲断层会使谱曲线出现异常的峰值,异 常峰值的位置与齿数有关,随齿数的增加向高频方向移动。齿倾角的变化会引 起振幅谱曲线上异常峰附近谱包络线的变化。不同方位的观测点处的振幅谱形 状各不相同。仔细地将观测谱与理论谱对比,有可能使人们了解断层面的非平 面性质。

一、引言

为了描述震源的非均匀性,一些学者提出了两种模型,即粗糙面 模 型(Kanamori和 Stewart, 1978)和壁垒模型(Das和Aki, 1977)。由于在这两种模型中引入了非均匀的 强度,或非均匀的终止应力,所以产生了丰富的高频波辐射。这对解释地震波观测资料,包 括强地面运动记录和远场地震图是非常有用的。在上述两种非均匀断层模型中,断层均被假 定为一个平面。这个假定给数学分析带来很大方便,作为一种简化处理是受 到 欢迎的。然 而,有证据表明断层面可能并不总是平面。这种证据首先可以在地震所引起的地表破裂带中 找到。通常,地表破裂带可能由一些断续的、成雁行排列的、不在一条直线上的各部分组合 而成。另外,某些强震的余震区分布也显示出非平面的特征。事实上,按照断裂力学的观 点,剪切断裂是很难保持在一个平面内扩展的。这样,研究断层扩展的非平面效应应该说是 一个具有理论和实际意义的问题。关于这个问题宫武隆(1984)曾进行过初步研究。在他的 研究中,考虑了一个以正弦函数展布的弯曲断层面,分析了剪切位错均匀传播时的短周期地 震波辐射问题。不过,他没有能够得到问题的精确解,只是在假定断层的起伏角很小时得到 了问题的近似解。

在本文中,我们提出了一种锯齿状的断层模型。据此我们对地震波的理论振幅谱进行了 数值计算并分析了谐的特征。 两个固体表面在如图 1 a 所示的外力作用下发生滑动时,由于表面的啮合和粘附,其运 动将受到阻碍,这就是摩擦。在CD 段仅有粘附力作用,但是在AB 段却既有粘附力作用,又 有凸起部分的阻力(沿斜面向上运动的阻力)作用。CD 段的滑动方向与物体的总体运动方 向相同,AB 段的滑动方向与物体的总体运动方向斜交。这个摩擦机制实际上是十八世纪提 出的凹凸机制(图 1 b)的改进。在图 1 b所示的凹凸机制中,仅考虑了固体界面上下运动 的库仑摩擦,而未顾及粘附力的作用。

图1 断层的摩擦机理及简化模型

Fig. 1 The frictional mechanism of fault and simplified model

研究断层面不是平面时的地震波辐射特征时,我们的着眼点在于断层的几何学而不是引 起摩擦力的物理机制。为了数学上的简化,我们考虑了沿断层总体运动方向分片为平面的断 层几何模型(图2a)。当断层发生滑动时,与此滑动方向成小角度的断层段仅发生剪切 滑 动,成大角度(>90°)相交的断层段则既发生剪切滑动又发生张 裂(图1b)。

图2 断层的几何模型和坐标系及符号注释

Fig. 2 The geometrical model of fault and the coordinate system and the symbol illustration

对于具有图 2 a 所示的几何形状的断层破裂扩展的运动学问题,它的解可由沿断 层 面运 动着的位错元所辐射出的地震波场迭加得到。

关于位错元辐射的地震波场,本文引用徐果明和周蕙兰(1982)给出的记号,除不同之 处外不再另加说明(图2b)。

1.剪切位错元的位移场(频率域)

 $\vec{du}^{s}(\vec{X}, \omega) = \mu u_{0}(\omega) d\Sigma (\vec{e}_{u} \cdot \nabla \vec{G} \cdot \vec{e}_{v} + \vec{e}_{v} \cdot \nabla \vec{G} \cdot \vec{e}_{u}),$ $\vec{G}(\vec{X}, \vec{\xi}, \omega) = \frac{1}{4 \pi \mu k_{0}^{s}} \left[\nabla \times \nabla \times \left(\frac{e^{-ik_{0}R}}{R} \cdot \vec{I} \right) - \nabla \nabla \cdot \left(\frac{e^{-ik_{0}R}}{R} \cdot \vec{I} \right) \right],$ 第3期

a

7

1

或 4 πμk G t (X,	$\xi_{j} (\omega) = \delta_{jmn} \frac{\partial}{\partial \xi_{m}} \delta_{nj1} \frac{\partial}{\partial \xi_{j}} \frac{e^{-ik_{\beta}R}}{R} \delta_{k1}$					
	$-\frac{\partial}{\partial\xi_1} \frac{\partial}{\partial\xi_1} \frac{e^{-i\mathbf{k}\cdot\mathbf{R}}}{\mathbf{R}} \delta_{1\mathbf{k}} =$					
= (δ _{i i}	$\delta_{mk} - \delta_{ik} \delta_{mj}) \frac{\partial}{\partial \xi_m} \frac{\partial}{\partial \xi_j} \frac{e^{-ik_j R}}{R} \frac{\partial}{\partial \xi_i} \frac{\partial}{\partial \xi_k} \frac{e^{-ik_k R}}{R}$					
$= \left(\frac{\partial^2}{\partial \xi_1 \partial \xi_2}\right)$	$\frac{\partial^2}{\partial \xi_m \partial \xi_m} = \frac{\partial^2}{R} - \frac{\partial^2}{\partial \xi_1 \partial \xi_k} - \frac{\partial^2}{R} - \frac{\partial^2}{\partial \xi_1 \partial \xi_k} = \frac{e^{-ik \cdot kR}}{R}$					
其中 ⊽ Ġ的分量形	式为 $\frac{\partial G_{k}}{\partial X_{k}}$ 。 i, j, k = 1, 2, 3。					
则	$e_{x_1} = \sin \alpha e_{x_1} + \cos \alpha e_{x_3} $					
	$e_{Y_2} = e_{x_2}$					
	$e_{x_3} = -\cos \alpha e_{x_1} + \sin \alpha e_{x_3}$					
	$\vec{e}_{R} = \sin\theta\cos\phi \vec{e}_{XI} + \sin\theta\sin\phi\vec{e}_{XI} + \cos\theta \vec{e}_{XI}$					
	$\vec{e_0} = \cos\theta\cos\phi\vec{e_{x_1}} + \cos\theta\sin\phi\vec{e_{x_2}} - \sin\theta\vec{e_{x_3}}$					
	$\overline{e_{\phi}} = -\sin\phi \overline{e_{x1}} + \cos\phi \overline{e_{x2}}$					
当er1 = e,时						
	$e_{x} \cdot e_{R} = \sin\theta\cos\phi\sin\alpha + \cos\theta\cos\alpha$,					
	$\overline{e_{y}} \cdot \overline{e_{g}} = \cos\theta\cos\phi\sin\alpha - \sin\theta\cos\alpha$					
	$e_{\bar{v}} \cdot e_{\bar{b}} = -\sin\phi\sin\alpha$					
当e.=eys时						
	$e_u \cdot e_R = -\sin\theta\cos\phi\cos\alpha + \cos\theta\sin\alpha$;					
	$e_u \cdot e_0 = -\cos\theta\cos\phi\cos\alpha - \sin\theta\sin\alpha$;					
	$e_u \cdot e_{\phi} = \sin \phi \cos \alpha$.					
对于远场	_					
$\frac{4\pi\rho\theta^3}{i\omega g(\omega)} du^3 =$	$= 2 \left(\frac{\beta}{\alpha}\right)^{3} \left[\left(\overline{e_{y}} \cdot \overline{e_{R}}\right) \left(\overline{e_{u}} \cdot \overline{e_{R}}\right)\right] \frac{m_{0}e^{-ikeR}}{R} e_{R} +$					
$+\left[\left(\overrightarrow{e_{u}}\cdot\overrightarrow{e_{p}}\right)\right]$	$\vec{e}_{i} \cdot \vec{e}_{0} + (\vec{e}_{i} \cdot \vec{e}_{R}) (\vec{e}_{u} \cdot \vec{e}_{0})] \frac{m_{0}e^{-ik_{0}R}}{R} \vec{e}_{0} +$					
$+\left[\left(\overrightarrow{e_{u}}\cdot\overrightarrow{e_{p}}\right)\right]$	$\overline{e_* \cdot e_{\phi}}$ + ($\overline{e_* \cdot e_R}$) ($\overline{e_* \cdot e_{\phi}}$) $\frac{m_0 e^{-ik_{\beta}R}}{R} = e_{\phi}$ =					
$= \mathfrak{D}_{\mathbf{R}}^{s} \frac{m_{0}e^{-i\mathbf{k}\mathbf{a}\mathbf{F}}}{R}$	$\frac{1}{e_{R}} + \mathfrak{D}_{\phi}^{s} - \frac{m_{\phi}e^{-ik_{\phi}R}}{R} = + \mathfrak{D}_{\phi}^{s} - \frac{m_{\phi}e^{-ik_{\phi}R}}{R} = 0$					
当e,=ey1, e"=	e_{x_3} 时,我们将 Ω_x 、 Ω_t 、 Ω_t 表示为 θ 、 ϕ 、 α 的三角函数的形式。应注					
意它们是断层坐标的函数(m。也是断层坐标的函数)。最终有:						
$\mathbf{\sigma}_{\mathbf{s}} = \left(\beta \right)^{3} \left[\sin 2\alpha \right] \left(1 + 2 \cos 2\beta \right) = \left[2 + 1 + 2 \cos 2\beta \right] \left[\sin 2\alpha \right] \left[1 + 2 \sin 2\beta \right] \left[\sin 2\alpha \right] \left[1 + 2 \sin 2\beta \right] \left[\sin 2\alpha \right] \left[1 + 2 \sin 2\beta \right] \left[1 + 2 \sin 2\beta$						

 $\mathfrak{D}_{\mathbf{a}}^{\mathbf{s}} = \left(\frac{\mathbf{p}}{\alpha}\right)^{\mathbf{c}} \left[\frac{\sin 2\alpha}{4} \left(1 + 3\cos 2\theta - \cos 2\phi + \cos 2\theta\cos 2\phi\right) - \sin 2\theta\cos \phi\cos 2\alpha}\right],$ $\mathfrak{D}_{\mathbf{a}}^{\mathbf{s}} = -\frac{\mathbf{a}}{4}\sin 2\theta\sin 2\alpha - 4\sin 2\theta\cos 2\phi\sin 2\alpha - \cos 2\theta\cos \phi\cos 2\alpha},$ $\mathfrak{D}_{\mathbf{a}}^{\mathbf{s}} = \frac{\mathbf{a}}{4}\sin \theta\sin 2\phi\sin 2\alpha + \cos \theta\sin \phi\cos 2\alpha}.$

式中α是断层面坐标的函数。 对于总体破裂速度为v:的单侧破裂有: $\frac{4 \pi \rho \beta^{3}}{i \omega g(\omega)} d \overrightarrow{u^{s}} = \mathfrak{D}_{R}^{s} \frac{m_{0} e^{-ik \mathfrak{g} R' - ik \mathfrak{g} x_{1}}}{R'} \overrightarrow{e_{R}} + \mathfrak{D}_{\theta}^{s} \frac{m_{0} e^{-ik \mathfrak{g} R' - ik \mathfrak{g} x_{1}}}{R'} \overrightarrow{e_{\theta}} +$ + $\mathfrak{D}^{s}_{\phi} \frac{m_{0}e^{-ik_{\beta}R'-ik_{f}x_{1}}}{R'} e_{\phi}$ 其中 $k_1 = \omega/v_1$ 。 $\mathfrak{D}_{\mathbf{R}}^{\mathbf{S}} = d_{\mathbf{1}}^{\mathbf{R}}(\theta, \phi) \sin 2\alpha + d_{\mathbf{1}}^{\mathbf{R}}(\theta, \phi) \cos 2\alpha ,$ 可以记 $\mathfrak{D}_{\theta}^{s} = d_{1}^{\theta} (\theta, \phi) \sin 2 \overline{\alpha} + d_{2}^{\theta} (\theta, \phi) \cos 2 \overline{\alpha} ;$ $\mathfrak{D}^{s}_{\phi} = d^{\phi}_{1}(\theta, \phi) \sin 2\alpha + d^{\phi}_{2}(\theta, \phi) \cos 2\alpha,$ $d_{1}^{\underline{n}} = \frac{1}{4} \left(\frac{\beta}{\alpha}\right)^{3} (1 + 3\cos 2\theta - \cos 2\phi + \cos 2\theta \cos 2\phi);$ 其中 $d_{2}^{R} = -\left(\frac{\beta}{\alpha}\right)^{3} \sin 2\theta \cos \phi$, $d_{1}^{0} = -\frac{3}{4}\sin 2\theta - \frac{1}{4}\sin 2\theta\cos 2\phi$ $d = -\cos 2\theta \cos \phi$ $d_1 = \frac{1}{2} \sin\theta \sin 2\phi$ $d_2^{\bullet} = \cos\theta \sin\phi$. 2. 张裂位错 $du^{T}(X, \omega) = u_{0}(\omega) d\Sigma [\lambda \nabla \cdot \vec{G} + \mu e_{j} \cdot (\nabla \vec{G} + \vec{G} \nabla) \cdot \vec{e_{j}}].$ 对于远场 $d u^{\mathsf{T}}(\mathbf{X}, \omega) = i \omega g(\omega) m_0(\mathbf{X}) \frac{1}{4 \pi \alpha R^3 C} \mathcal{D}^{\mathsf{T}} e^{-i \frac{\omega}{C} R}$ 其中 $\widehat{\mathfrak{D}}^{\mathsf{T}} = \left\{ 1 + 2\left(\frac{\beta}{\alpha}\right)^2 \left[\left(\overrightarrow{e_*} \cdot \overrightarrow{e_R} \right)^2 - 1 \right] \right\} \overrightarrow{e_R} + 2 \left(\overrightarrow{e_*} \cdot \overrightarrow{e_R} \right) \left(\overrightarrow{e_*} \cdot \overrightarrow{e_4} \right) \overrightarrow{e_6} + \left(\overrightarrow{e_*} \cdot \overrightarrow{e_R} \right) \left(\overrightarrow{e_*} \cdot \overrightarrow{e_R} \right) \left(\overrightarrow{e_*} \cdot \overrightarrow{e_R} \right) \overrightarrow{e_6} \right\}$ + 2 $(e_{i} \cdot e_{k})$ $(e_{i} \cdot e_{i})$ e_{i} 对于 e_{1} 方向分量(即P波), C= α , 式中 对于e_•, e_•方向的分量(即S波), C=β。 此时 $e_{\mathbf{I}}^{\mathbf{T}} \cdot e_{\mathbf{P}} = e_{\mathbf{v}} \cdot e_{\mathbf{P}} = \sin\theta\cos\phi\sin\alpha + \cos\theta\cos\alpha$; $e_{u}^{T} \cdot e_{s} = e_{*} \cdot e_{s} = \cos\theta\cos\phi\sin\alpha - \sin\theta\cos\alpha$, $\vec{e}_{\parallel}^{T} \cdot \vec{e}_{\bullet} = \vec{e}_{\star} \cdot \vec{e}_{\bullet} = -\sin\phi\sin\alpha$. 从而 $\overline{\mathfrak{D}}^{T} = \left\{ 1 + 2\left(\frac{\beta}{\alpha}\right)^{2} \left[(\sin\theta\cos\phi\sin\alpha + \cos\theta\cos\alpha)^{2} - 1 \right] \right\} \overline{e_{R}} +$ + 2 $(\sin\theta\cos\phi\sin\overline{\alpha} + \cos\theta\cos\overline{\alpha})$ ($-\sin\phi\sin\overline{\alpha}$) ($\overline{e_0} + \overline{e_0}$) $= \mathfrak{D}_{e_1}^{\mathsf{T}} + \mathfrak{D}_{e_2}^{\mathsf{T}} (e_1 + e_2)$

其中

第3期

$$\mathfrak{D}_{\mathbf{x}}^{\mathbf{x}} = 1 + 2\left(\frac{\beta}{\alpha}\right)^{2} \left[(\sin\theta\cos\phi\sin\overline{\alpha} + \cos\theta\cos\overline{\alpha})^{2} - 1 \right];$$

 $\mathcal{D}_{i_0}^{T} = -2 (\cos\phi \sin\theta \sin\alpha + \cos\theta \cos\alpha) \sin\phi \sin\alpha$ 。 对于总体破裂速度为v,的单侧破裂有

$$\frac{4 \pi \rho \beta^{2} c}{i \omega g(\omega)} d\overline{u^{T}} = \widehat{\mathcal{D}}_{T} m_{0} (X) \qquad \frac{e^{-i \frac{\omega}{c} R' - i k_{I} x_{I}}}{R'} \circ$$

一般的弹性波场可由位错元辐射波场迭加而得。下面将具体计算一个特殊模型的解,这 个解可以化为非常简洁的形式。

三、等齿单侧破裂模型

对于如图 3 a 所示的等齿凹凸模型, 假设破裂由断层面一侧向另一侧单向传播。在 图 3 b的记号下有:

$$R_{n} \approx R - \sum_{j=0}^{n-1} \left[1_{1} \frac{\cos \theta_{j}}{\cos \alpha} + 1_{2} \frac{\cos \theta_{j-1}}{\cos \beta} \right]$$
 (3)

如图 3 c所示, 假设破裂传播的总体方向与场点位矢方向的夹角为 θ_0 , 场点的 球 坐标为 \mathbf{C} , $\mathbf{\theta}$, $\mathbf{\phi}$, $\mathbf{\phi}$), 则如图 3 c所示, θ_0 可由 θ 和 ϕ 通过如下关系式求得;

$$\cos\theta_0 = \cos\phi \cdot \sin\theta$$
 (4)

第13卷

)

)

5

(8)

另外,可以求得下列关系式:

$$\frac{\cos\theta_{j}}{\cos\alpha} = \cos\theta_{0} + tg \overline{\alpha} \cdot \cos\theta,$$

$$\frac{\cos\theta_{j,1}}{\cos\beta} = \cos\theta_{0} - tg\overline{\beta} \cdot \cos\theta. \qquad (5)$$

将(4)、(5)式代入(2)式便有

 $R_{\bullet} \approx R - n (l_1 + l_2) \cos \theta_0 - n (l_1 t g \overline{\alpha} - l_2 t g \overline{\beta}) \cos \theta_0$

$$l_1 t g \overline{\alpha} = l_2 t g \overline{\beta} , \qquad (6)$$

$$l = l_1 + l_2 , \qquad (7)$$

则最终有 R_a≈R-nlcosθ_a。

这样,将(5)式和(8)式代入(1)式並经过化简后有

当R足够大时, 1/R'≈1/R, 从而

$$\frac{4 \pi \rho \beta^{\mathfrak{s}}}{i \omega \mathfrak{g}(\omega)} \overrightarrow{\mathfrak{u}}^{\mathfrak{s}}(\vec{R}, \omega) = \int_{0}^{L} \frac{4 \pi \rho \beta^{\mathfrak{s}}}{i \omega \mathfrak{g}(\omega)} d \overrightarrow{\mathfrak{u}}^{\mathfrak{s}} = \int_{0}^{L} \left\{ \mathfrak{D}_{\mathfrak{k}}^{\mathfrak{s}} \frac{\mu w \delta(\mathfrak{x}_{1}) e^{-i(k_{\mathfrak{s}}R' + k_{\mathfrak{s}}\mathfrak{x}_{1})}}{R'} \overrightarrow{\mathfrak{e}_{\mathfrak{k}}} + \left(\mathfrak{D}_{\mathfrak{s}}^{\mathfrak{s}} \overrightarrow{\mathfrak{e}_{\mathfrak{s}}} + \mathfrak{D}_{\mathfrak{s}}^{\mathfrak{s}} \overrightarrow{\mathfrak{e}_{\mathfrak{s}}} \right) \frac{\mu w \delta(\mathfrak{x}_{1}) e^{-i(k_{\mathfrak{s}}R' + k_{\mathfrak{s}}\mathfrak{x}_{1})}}{R'} \right\} d\mathfrak{x}_{1} \approx$$

$$\approx \frac{\mu w}{R} \int_{0}^{L} \left\{ \mathfrak{D}_{s}^{s} \delta(\mathbf{x}_{1}) e^{-i(k_{s}R' + k_{f}\mathbf{x}_{1})} e_{\mathbf{x}}^{-} + \left(\mathfrak{D}_{s}^{s} e_{s}^{-} + \mathfrak{D}_{s}^{s} e_{s}^{-} \right) \delta(\mathbf{x}_{1}) e^{-i(k_{s}R' + k_{f}\mathbf{x}_{1})} \right\} d\mathbf{x}_{1}$$

$$= \frac{\mu w}{R} \sum_{j=0}^{N+1} \left\{ \int_{jl}^{jl+1_{1}} + \int_{jl+1_{1}}^{(j+1)l} \right\} \left\{ \mathfrak{D}_{s}^{s} \delta(\mathbf{x}_{1}) e^{-i(k_{s}R' + k_{f}\mathbf{x}_{1})} e_{\mathbf{x}}^{-} + \left(\mathfrak{D}_{s}^{s} e_{s}^{-} + \mathfrak{D}_{s}^{s} e_{s}^{-} \right) \delta(\mathbf{x}_{1}) e^{-i(k_{s}R' + k_{f}\mathbf{x}_{1})} e_{\mathbf{x}}^{-} + \left(\mathfrak{D}_{s}^{s} e_{s}^{-} + \mathfrak{D}_{s}^{s} e_{s}^{-} \right) \delta(\mathbf{x}_{1}) e^{-i(k_{s}R' + k_{f}\mathbf{x}_{1})} e_{\mathbf{x}}^{-} + \left(\mathfrak{D}_{s}^{s} e_{s}^{-} + \mathfrak{D}_{s}^{s} e_{s}^{-} \right) \delta(\mathbf{x}_{1}) e^{-i(k_{s}R' + k_{f}\mathbf{x}_{1})} e_{\mathbf{x}}^{-} + \left(\mathfrak{D}_{s}^{s} e_{s}^{-} + \mathfrak{D}_{s}^{s} e_{s}^{-} \right) \delta(\mathbf{x}_{1}) e^{-i(k_{s}R' + k_{f}\mathbf{x}_{1})} e^{-ik_{s}R} e_{\mathbf{x}}^{-} + \left(\mathfrak{D}_{s}^{s} e_{s}^{-} + \mathfrak{D}_{s}^{s} e_{s}^{-} \right) \delta_{s,j} e^{-2ij(Y_{1}-Y)} \int_{jl+1_{1}}^{jl+1_{1}} e^{2iY_{1}\mathbf{x}_{l}/l} d\mathbf{x}_{1} + \left(\mathfrak{D}_{s,1}^{s} e_{s}^{-} + \mathfrak{D}_{s,2}^{s} e_{s}^{-} \right) \delta_{s,j} e^{-2ij(Y_{1}-Y)} \int_{jl}^{jl+1_{1}} e^{2iY_{1}\mathbf{x}_{l}/l} d\mathbf{x}_{1} + \left(\mathfrak{D}_{s,1}^{s} e_{s}^{-} + \mathfrak{D}_{s,2}^{s} e_{s}^{-} \right) \delta_{s,j} e^{-2ij(Y_{1}-Y)} \cdot \int_{jl}^{(j+1)l} e^{2iY_{1}\mathbf{x}_{l}/l} d\mathbf{x}_{1} + \left(\mathfrak{D}_{s,1}^{s} e_{s}^{-} + \mathfrak{D}_{s,2}^{s} e_{s}^{-} \right) \delta_{s,j} e^{-2ij(Y_{1}-Y)} \cdot \int_{jl}^{(j+1)l} e^{2iY_{1}\mathbf{x}_{l}/l} d\mathbf{x}_{1} + \left(\mathfrak{D}_{s,1}^{s} e_{s}^{-} + \mathfrak{D}_{s,2}^{s} e_{s}^{-} \right) \delta_{s,j} e^{-2ij(Y_{1}-Y)} \cdot \int_{jl}^{(j+1)l} e^{2iY_{1}\mathbf{x}_{l}/l} d\mathbf{x}_{1} + e^{2iX_{1}\mathbf{x}_{1}/l} d\mathbf{x}_{1} \right] e^{-ik_{s}R} \right\}_{s}$$

$$(10)$$

其中 δ₁, δ₁, δ₁, β₁, β

若

且令

场,我们忽略了断层不同锯齿的位置所引起的辐射因子的变化。另外,在(10)式中使用图 2 b以下记号:

$$X_{1} = [(\cos\theta_{0} + tg\overline{\alpha} \cdot \cos\theta) k_{\overline{\alpha}} - k_{\overline{t}}] 1/2 ,$$

$$X_{2} = [(\cos\theta_{0} - tg\overline{\beta} \cdot \cos\theta) k_{\overline{\alpha}} - k_{\overline{t}}] 1/2 ,$$

$$Y_{1} = [(\cos\theta_{0} + tg\overline{\alpha} \cdot \cos\theta) k_{\overline{s}} - k_{\overline{t}}] 1/2 ,$$

$$Y_{2} = [(\cos\theta_{0} - tg\overline{\beta} \cdot \cos\theta) k_{\overline{s}} - k_{\overline{t}}] 1/2 ,$$

$$X = [\cos\theta_{0} \cdot k_{\overline{\alpha}} - k_{\overline{t}}] 1/2 ,$$

$$Y = [\cos\theta_{0} \cdot k_{\overline{n}} - k_{\overline{t}}] 1/2 ,$$

$$Y = [\cos\theta_{0} \cdot k_{\overline{n}} - k_{\overline{t}}] 1/2 ,$$

在上面的公式推导中使用了(9)式。

求出(10)式中的积分,且令

$$\begin{cases} \delta_{1j} = \begin{cases} \delta_0, j = 0; \\ \delta_{1j} = \delta_2, j \neq 0; \\ j = 0, 1, \cdots, (N-1) \end{cases}$$
(12)

经过化简后可得

$$\frac{4\pi\rho\beta^{3}R}{i\omega g(\omega)\mu w}\vec{u}^{3}(\vec{R},\omega) =$$

$$= \left\{ \mathfrak{D}_{\mathbf{x}1}^{s}\delta_{1}\frac{\sin\frac{X_{1}l_{1}}{1}}{X_{1}/l}e^{iX_{1}\frac{l_{1}}{l}}\left[\frac{\delta_{0}-\delta_{1}}{\delta_{1}}+\frac{\sin NX}{\sin X}e^{i(N-1)X}\right]+\right.$$

$$+ \mathfrak{D}_{\mathbf{x}2}^{s}\delta_{2}\frac{\sin\frac{X_{2}l_{2}}{X_{2}/l}}{X_{2}/l}\cdot\frac{\sin NX}{\sin X}\cdot e^{-iX_{2}\frac{l_{2}}{l}+i(N+1)X}\right\}e^{-ik_{0}R}\vec{e}_{2}}+$$

$$+ \left\{ (\mathfrak{D}_{01}^{s}\vec{e}_{0}+\mathfrak{D}_{01}^{s}\vec{e}_{0})\delta_{1}\frac{\sin\frac{Y_{1}l_{1}}{Y_{1}/l}}{Y_{1}/l}e^{iY_{1}\frac{l_{1}}{l}}\left[\frac{\delta_{0}-\delta_{1}}{\delta_{1}}+\frac{\sin NY}{\sin Y}e^{i(N-1)Y}\right]+$$

$$+ (\mathfrak{D}_{02}^{s}\vec{e}_{0}+\mathfrak{D}_{02}^{s}\vec{e}_{0})\delta_{2}\frac{\sin\frac{Y_{2}l_{2}}{Y_{2}/l}}{Y_{2}/l}\cdot\frac{\sin NY}{\sin Y}e^{-iY_{2}\frac{l_{2}}{l}+i(N+1)Y}e^{-ik_{0}R}.$$

$$(13)$$

如果 $\delta_2 = \delta_1 \cos(\alpha + \beta)$, 即与断层面总体方 向 成 β 角的断层部分上的剪切错动是 由于另一个成 α 角的部分上的剪切错动所导致的,则

$$\frac{4 \pi \rho \beta^{3} R}{i \omega g(\omega) \mu N l \delta_{1} W} \overline{u}^{3} (\overline{R}, \omega) =$$

$$= \left\{ \mathfrak{D}_{\mathbf{z}1}^{\mathbf{z}} \cdot \frac{l_{1}}{l} \frac{\sin \frac{X_{1} l_{1}}{1}}{X_{1} l_{1} / l} \left(\frac{1}{N} \frac{\delta_{0} - \delta_{1}}{\delta_{1}} + \frac{\sin N X}{N \sin X} e^{i(N-1)X} \right) e^{iX_{1}} \frac{l_{1}}{l} +$$

$$+ \mathfrak{D}_{\mathbf{z}0}^{\mathbf{z}} \cdot \frac{l_{2}}{l} \cdot \cos \left(\overline{\alpha} + \overline{\beta}\right) \cdot \frac{\sin \frac{X_{2} l_{2}}{X_{2} l_{2} / l}}{X_{2} l_{2} / l} \cdot \frac{\sin N X}{N \sin X} e^{-i \frac{X \mathbf{z} l_{3}}{l} + i(N+1)X} e^{-i\mathbf{k} \cdot \mathbf{R}} \overline{\mathbf{e}}_{\mathbf{z}} +$$

.

J

۰. د

$$\begin{aligned} + \left(\left(\mathfrak{D}_{\mathbf{i}}^{\mathbf{i}}, \mathbf{e}_{\mathbf{i}}^{\mathbf{i}} + \mathfrak{D}_{\mathbf{i}}^{\mathbf{i}}, \mathbf{e}_{\mathbf{i}}^{\mathbf{i}} \right) \frac{1_{1}}{1_{1}} \frac{\sin \frac{\mathbf{Y}_{11}}{|\mathbf{Y}_{11}|/1|}}{|\mathbf{Y}_{11}|/1|} e^{\frac{1}{1} - \frac{1}{|\mathbf{I}|}} \left[\frac{1}{|\mathbf{N}|} \frac{\delta_{\mathbf{e}} - \delta_{\mathbf{i}}}{\delta_{\mathbf{i}}} + \frac{\sin \mathbf{NY}}{\operatorname{NsinY}} e^{-i(\mathbf{N}-1)\mathbf{Y}} \right] + \\ + \left(\mathfrak{D}_{\mathbf{i}}^{\mathbf{i}}, \mathbf{e}_{\mathbf{i}}^{\mathbf{i}} + \mathfrak{D}_{\mathbf{i}}^{\mathbf{i}}, \mathbf{e}_{\mathbf{i}}^{\mathbf{i}} \right) \frac{1_{1}}{1|\cos(\alpha|\alpha|+\beta|)} e^{-i\frac{\mathbf{Y}_{11}}{|\mathbf{Y}_{11}|/1|}} e^{-i\frac{\mathbf{Y}_{11}}{|\mathbf{Y}_{11}|/1|}} \frac{\sin \mathbf{NY}}{\operatorname{NsinY}} e^{-i\frac{\mathbf{Y}_{11}}{|\mathbf{Y}|}} + i(\mathbf{N}+1)\mathbf{Y}} \right\} + \\ \cdot e^{-i\mathbf{k}_{\mathbf{R}}} e^{-i\mathbf{k}_{\mathbf{R}}} e^{-i\frac{\mathbf{Y}_{11}}{|\mathbf{Y}_{11}|/1|}} e^{-i\frac{\mathbf{Y}_{11}}}{|\mathbf{Y}_{11}|/1|}} e^{-i\frac{\mathbf{Y}_{11}}{|\mathbf{Y}_{11}|/1|}} e^{-i\frac{\mathbf{Y}_{11}}{|\mathbf{Y}_{11}|/1|}} e^{-i(\mathbf{Y}_{11}|/1|}) e^{-i\frac{\mathbf{Y}_{11}}{|\mathbf{Y}_{11}|/1|}} e^{-i\frac{\mathbf{Y}_{11}}{|\mathbf{Y}_{11}|/1|}} e^{-i\frac{\mathbf{Y}_{11}}{|\mathbf{Y}_{11}|/1|}} e^{-i\frac{\mathbf{Y}_{11}}{|\mathbf{Y}_{11}|/1|}} e^{-i\frac{\mathbf{Y}_{11}}{|\mathbf{Y}_{11}|/1|}} e^{-i\frac{\mathbf{Y}_{11}}{|\mathbf{Y}_{11}|/1|}} e^{-i\frac{\mathbf{Y}$$

 $sin(\alpha + \beta) = 0$,体波振幅谱中将不再含有张位错成份。

第3期

. í

四、等齿单侧破裂的谱特征

我们令 $\delta_0/\delta_1 = 1$, $\beta/\alpha = 1/\sqrt{3}$, $V_1/\beta = 6/7$, 对于表 1 所列参数组计算了 该 模 型的谱。在计算中取震源时间函数为斜坡函数, 其谱满足

 × .	

No	α	β	θ	ф	N N	N ₀	a	β	θ	¢	N
1	30	60	30	30	1	11	30	60	120	30	- 5
2	30	60	30	30	2	12	30	60	150	30	Б
8	30	60	30	30	8	13	30	60	180	30	5
4	30	60	30	30	4	14	30	60	30	60	5
5	30	. 60	3.0	30	5	15	30	60	30	90	5
6	30	60	30	30	10	16	30	60	30	120	5
7	45	45	30	30	5	17	30	60	30	150	: 6
8	60	30	_ 30	30	5	18	30	60	_30	_ 180	5
9	30	60	60	30	5	19	3.0	30	30	30	5
10	30	60	90	30	5	20	60	60	30	30	5

Fig. 4 The amplitude spectral curves of u_R for variant N ($\alpha = 30^\circ$, $\overline{\beta} = 60^\circ$, $\theta = 30^\circ$, $\phi = 30^\circ$)

图 5 对于不同的锯齿数N, θ 向位移振幅谱曲线 (α = 30°, β = 60°, θ = 30°, ϕ = 30°)

Fig. 5 The amplitude spectral curves of us for variant N ($\overline{\alpha} = 30^\circ$, $\overline{\beta} = 60^\circ$, $\phi = 30^\circ$, $\theta = 30^\circ$)

$$|\omega g(\omega)| = \left| \begin{array}{c} \frac{\sin \frac{\omega \tau}{2}}{\frac{\omega \tau}{2}} \right|$$
 (18)

这里取 2 $\beta \tau / 7 L = 1$ 。

根据计算结果,我们作出了当 $\overline{\alpha}$ = 30°, $\overline{\beta}$ = 60°, θ = 30°, ϕ = 30°时,对于不同的锯齿 个数 N,

中两种曲线(图4、5)。由这些图可以看出,由于断层面的锯齿状起伏,其体波位移谱与 平面断层谱有很大的差异,这种差异主要表现在谱的形状的不规则变化。不过,对于所有的 N,其低频趋势都是相同的。事实上,从公式(16)和(17)可以直接得到:

$$\frac{4 \pi \rho \beta^{3} R}{\mu L W \delta_{1}} \left| u_{R}(\vec{R}, \omega) \right| \longrightarrow \left| \mathfrak{D}_{R1}^{S} \frac{1_{1}}{1} + \left[\mathfrak{D}_{R1}^{S} \cos\left(\overline{\alpha} + \overline{\beta}\right) + \frac{\beta}{\alpha} \mathfrak{D}_{R1}^{T} \sin\left(\overline{\alpha} + \overline{\beta}\right) \right] \cdot \frac{1_{2}}{1} \right|,$$

6

$$\frac{4 \pi \rho \beta^{s} R}{\mu L W \delta_{1}} \left(\begin{array}{c} | u_{\theta} (\overline{R}, \omega) | \\ | u_{\theta} (\overline{R}, \omega) | \end{array} \right) \longrightarrow \left| \left(\begin{array}{c} \mathfrak{D}^{\theta}_{1} \\ \mathfrak{D}^{s}_{\theta}_{1} \end{array} \right) \frac{1_{1}}{1} + \left[\left(\begin{array}{c} \mathfrak{D}^{s}_{0} \\ \mathfrak{D}^{s}_{0} \end{array} \right) \cos \left(\overline{\alpha} + \overline{\beta} \right) + \left(\begin{array}{c} \mathfrak{D}^{T}_{\theta}_{2} \\ \mathfrak{D}^{T}_{\theta}_{2} \end{array} \right) \sin \left(\overline{\alpha} + \overline{\beta} \right) \right] \frac{1_{2}}{1} \right| .$$
(19)

由(19)式可见,等齿单侧破裂模型辐射的体波位移谱的低频 趋 势(ω→0)与 齿 数 N 无 关。可是,这个低频极限却与齿 的 倾角α、β有关。因而,由这个低频极 限 来 确 定 地震矩 时,对于断层面的起伏情况的了解是必要的。

在图 4、5中,我们用字母H标出了对于不同的N的振幅谱与平面断层振幅谱的显 著差 异部分,这种差异主要表现在相对于平面断层振幅谱值的增强。不难看出,随着N的增大, 诸值增强开始的位置在逐渐向高频方向移动。而且还可看出,谱值增强的频带是有规律地出 现的。例如,在图 4 b中,N = 2,这时谱值增强的频带首先在谱的包络线的第二个 峰处出 现,然后每隔两个峰出现一次。在图 4 c中,N = 3。这时,谱增强的频带首先在谱 的 包络 线的第三个峰处出现,然后隔了 4 个峰才又出现。至于N = 5 (图 4 d)及N = 10 (图 4 e) 时,谱最明显的增强也分别出现在包络线的第5、第10个峰处,振幅谱的这种在某些高频频 带的增强,对于研究和确定断层面起伏的性质是很有意义的。

另外,由上述的结果也可推知,当N很大时,如果齿倾 角α、β是固定的锐角,那 么振 幅谱在一个有限的频带范围内与平面断层的谱是一致的。或者说,如果我们无法 得 到 足 够 高的频率范围的谱,那么就无法辨认出这种崎曲不平的断层面。

同样,根据计算结果,我们给出了当 N = 5, θ = 30°, ϕ = 30°, 齿倾角不同时, log |4 $\pi \rho \beta^{3} Ru_{2}(R, \omega)/\mu LW\delta_{1}|$, log |4 $\pi \rho \beta^{3} Ru_{2}(R, \omega)/\mu LW\delta_{1}|$ 及log |4 $\pi \rho \beta^{3} Ru_{2}(R, \omega)/\mu LW\delta_{1}|$ 随 log(7 $\omega L/4\beta$)的变化曲线。图6、图7为其中两种曲线。由 这些图可以看出,虽然齿倾角不同,但是由于齿数相同,所以振幅谱的增强仍在包络线的第 五个峰处首先出现。齿倾角的变化仅引起了谱包络线上这个峰附近的峰强度的变化。例如, 当7不变, α 由30°变到60°时(这时齿变得更加尖锐), u_{R} 的谱在异常增强的第五个 峰 处出 现了新的增强;当 α 不变, β 由60°变为30°时(这时齿变钝), u_{R} 的谱在异常增强的第五

个峰后虽然衰减变大,但仍然在该峰后的第四个峰处出现了新的增强。由此可见,如果想了 **解齿倾角的情况,**那么就必须研究与齿数N相对应的异常增强峰附近的谱包络线的细节。

큑 $\frac{4 \pi \rho \beta^{s} R}{|\omega g(\omega)| \cdot \mu L W \delta_{1}}$ \vec{u} (\vec{R} , ω) = $\vec{\mathfrak{P}}_0 \frac{\sin X_0}{X_0}$ $\frac{1}{2} \log \left| \frac{4\pi \rho \beta' R}{\omega L W d_{l}} U_{R}(\overline{R}, \omega) \right|$ $\log \frac{4\pi \rho \beta' R}{\mu L W \delta_1} U_R(R, \mu)$ $\log \left[\frac{4\pi\rho\beta^{2}R}{\mu LW\sigma_{i}} u_{R}(\overline{R}, \omega) \right] =$ - ($\sqrt{\frac{108}{108}}$ - 8 $2 \log^{4}$ 7007 1 $\frac{2}{\log \frac{7 \text{WL}}{4\beta}}$ 1 0 - 1 0 1 AR b. $\theta = 60^{\circ} \Phi = 30^{\circ}$ $\mathbf{c} \cdot \mathbf{\theta} = 120^{\circ} \mathbf{\Phi} = 30^{\circ}$ 4β a. 0 = 30° ¢ = 30° $\log \left| \frac{4\pi\rho\beta'R}{\mu LWd} \mathbf{U}_{\mathbf{R}}(\mathbf{\bar{R}}, \boldsymbol{\mu}) \right|$ $\frac{1}{4\pi\rho\beta' R} = \frac{4\pi\rho\beta' R}{44 LW\delta_{i}} u_{R}(\overline{R}, W)$ 0. - 2 - 2 - 4 - 1 ~ 6 ~ 8 $\frac{2}{\log \frac{7W}{4V}}$ 1 log⁷W -1 0 1 **4**B $e.\theta = 30^{\circ} \Phi = 120^{\circ}$ d. θ= 30° φ= 60° 对于不同的方位角 θ 、 ϕ , R向位移振幅谱曲线 图 8 $(\overline{\alpha} = 30^\circ, \overline{\beta} = 60^\circ, N = 5)$ F ф

Fig. 8 The amplitude spectral curves of
$$u_R$$
 for variant θ ,
($\overline{\alpha} = 30^\circ$, $\overline{\beta} = 60^\circ$, N = 5)

其中

G

 $\overrightarrow{\mathfrak{D}}_{0} = -\left(\frac{\beta}{\alpha}\right)^{3} \sin 2 \theta \cos \phi \overrightarrow{\mathfrak{e}}_{R} - \cos 2 \theta \cos \phi \overrightarrow{\mathfrak{e}}_{\theta} + \cos \theta \sin \phi \overrightarrow{\mathfrak{e}}_{\phi}$

 $X_{0} = (\cos\theta_{0} \cdot k_{a} - k_{f}) L/2$

场点方位角 θ 、 ϕ 对振幅谱的影响由一个独立的因子 $|\widehat{\mathbf{D}}_0|$ 表示。由此可以推断,对于不同的 观测点,振幅谱的形状是相似的,它是仅取决于时间因子g(ω)及有限性因子 $\frac{\sin X_0}{X_0}$ 的。 然而,由公式(16)和(17)可知,当断层面不再是平面时,体波振幅谱将不再存在这种简 单的因式分解,因而不再具有这种品质。对于不同的观测点,振幅谱的形状将会是很不相同 的。图 8 和图 9 给 出了N = 5、 α = 30°、 β = 60°时,对于不同方位角 θ 、 ϕ 的R、 θ 向位 移振 幅谱曲线。限于篇幅 ϕ 向位移振幅谱曲线没有给出。人们在根据地震记录研究震源 破裂运动 学行为时已经发现,虽然断层面为平面的理论认为,不同的观测点得到的谱曲线应该是相似 的,但是,事实並非如此。现在从本文的结果来看,出现这种情况除了人们通常认为的传播 介质(包括台址局部条件)方面的原因之外,断层面的非平直性也是一个不应忽视的因素。 鉴别的一个根据是,前者是随机的,后者是可以由本文提供的公式来计算的。

五、小 结

本文提出了一种弯曲断层面的非均匀断裂模型。为计算确定起见,将弯曲断层面简化为 锯齿形状。当每个锯齿上的滑动是均匀的,同时具有均匀的位错传播速度时,可以得到问题 的封闭形式的精确解。对于等齿断层模型,问题的解被化为非常简洁的形式。

对于不同的齿数、齿倾角和场方位角,计算了体波辐射的振幅谱。研究发现,锯齿的数 目多少会使谱曲线上出现异常的峰值,异常峰值出现的位置与锯齿数目有关,随着齿数的增 加向高频方向移动。齿倾角的变化则会引起振幅谱曲线上,异常峰附近谱包络线的变化。另 外,由于断层面的非平直性,不同观测点处的振幅谱形状将不再是相同的,仔细地将观测谱 与理论谱对比,有可能使人们了解断层面的非平面性质。

(本文1990年8月10日收到)

参考 文献

(1)Kanamori, H.and Stewart, G.S., Seismological aspects of the Guatemala earthquake of February 4, 1976, J.Geophys. Res., Vol.83, 3427-3434, 1978.

C2)Das,S.and Aki, K., Fault plane with barriers, A versatile earthquake model, J.Geophys.Res., Vol.82, 5658-5670, 1977.

[8]宮武隆,短周期地震波の发生---断层面の形状の影响,地震研究所汇报, Vol.58, 399-406, 1984.

(4) Aki, K.and Richards, P. G., Quantitative Seismology Theory and Methods, W.H. Freeman and Company, 1980.

(5)傅承义、陈运泰、花贵仲,地球物理学基础,科学出版社,1985.

〔6〕徐杲明、周蕙兰,地震学原理,科学出版社,1982.

A NEW NON-UNIFORM FAULT MODEL AND ITS AMPLITUDE-SPECTRAL CHARACTER

Niu Zhiren, Li Bingqian (Seismological Bureau of Shaanxi Province, Xi'an, China)

Abstract

In this paper, a new non-uniform fault model with crooked fault surface is proposed. The crooked fault surface has been simplified as zigzag shape. When the slip and the travel velocity of dislocation on each saw tooth are uniforrm, we have found the analytic solution in enclosed form for the simplified problem. The amplitude spectra of body wave radiation have been calculated for different numbers of tooth, inclined angles of tooth and position angles of the field. The studied results show: 1) the crooked fault can make unusual peak appear in spectral curve, the position of the peak is dependent on the tooth number, and moves towards the point of high frequency as the number increasing; 2) the change of the inclined angle can cause the change of spectral envelope line near the unusual peak; 3) the shape of amplitude spectrum is different for the observing point with different position angles. Comparing observed with theoretic spectra carefully, ones perhaps understand the non-planar feature of fault surface.