海潮负荷引起的弹性潮汐形变解

1.计算方法

根据自由振荡理论,质量负荷作用下的地球形变平衡方程[1]形式为

$$\rho_{0}g_{0}\Theta + \rho_{0}\frac{\partial\psi}{\partial r} - \rho_{0}\frac{\partial}{\partial r}(\rho_{0}u) + \frac{\partial}{\partial r}(\lambda\Theta + 2\mu\frac{\partial u}{\partial r}) + \frac{2\mu}{r}\frac{\partial e_{r\theta}}{\partial \theta} + \frac{\mu}{r}(4e_{rr} - 2e_{\theta\theta}) - 2e_{\phi\phi} + 2tg\theta \cdot e_{r\theta} = 0,$$

$$\frac{\rho_{0}}{r}\frac{\partial\psi}{\partial \theta} + 2\frac{\partial}{\partial r}(\mu e_{r\theta}) + \frac{1}{r}\frac{\partial}{\partial \theta}(-g_{0}\rho_{0}u + \lambda\Theta + 2\mu e_{\theta\theta}) + \frac{\mu}{r}(2ctg\theta(\frac{1}{r}\frac{\partial v}{\partial \theta} - \frac{v}{r}ctg\theta) - 6e_{r\theta}) = 0.$$

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{2}{r} \frac{\partial \psi}{\partial r} - \frac{n(n+1)}{r^2} \psi = 4\pi G \left(\rho_0 \Theta + u \frac{\partial \rho_0}{\partial r} \right). \tag{2}$$

式中G为引力常数。引进球函数变换,并对(1)式和(2)式进行变量分离,即可得到关于r的常微分方程组,即

$$\frac{d}{dr}(Y_{i}(r)) = A(r)Y_{i}(r), \qquad i = 1, 2, 3, \dots, 6.$$

式中A(r)是与r有关的系数矩阵, $Y_1(r)$ 是待定未知数。选定合适的边界条件,采用标准四阶龙格库塔法求解(3)式,其积分解为

$$y_{i}(a) = \sum_{j=1}^{3} Q_{j} y_{ij}(a)$$
 (4)

引进球函数变换,即可得到描述地球静态形变的n阶地表负荷勒夫数,即

$$y_1(a) = a h'(n);$$

 $y_3(a) = a l'(n);$
 $y_5(a) = ag_0(a)[k'(n) - 1].$ (5)

通常将由(3)式满足边界条件的解(5)式组成的函数称为格林函数,即点负荷响应函数(5)。研究表明,重力和倾斜负荷效应由三部分组成,即直接、形变和附加效应,把后两种效应之和称为弹性变形项部分。将三部分叠加即可得到重力和倾斜负荷相应的格林函数,

$$G(\theta) = \frac{G}{R^{2}} \sum_{n=0}^{\infty} (n+2h'(n)-(n+1)k'(n)) P_{n}(\cos\theta);$$

$$T(\theta) = -\frac{1}{m} \sum_{n=0}^{\infty} (1+k'(n)-h'(n)) \frac{\partial P_{n}(\cos\theta)}{\partial \theta}.$$
(6)

实际计算中利用Farrell极限值性质进行Kummer变换。以提高级数收敛性。

有了上述负荷格林函数后,利用实测或理论海潮资料求得负荷效应,相应的褶积积分计 算公式为

$$L(\Omega, t) = \rho_{\mathbf{w}} \iint_{\Omega'} H(\Omega', t) G(\theta, \beta) d\Omega'.$$

$$L(\Omega, t) = \begin{pmatrix} g(\Omega, t) \\ \xi(\Omega, t) \\ \eta(\Omega, t) \end{pmatrix}, G(\theta, \beta) = \begin{pmatrix} G(\theta) \\ T(\theta) \cos \beta \\ T(\theta) \sin \beta \end{pmatrix}.$$

$$(7)$$

式中

L(Ω, t)和G(θ,β)分别代表重力和倾斜负荷各分量及其相应的格林函数。 $ρ_*$ 为 海 水密度,θ为观测和负荷点间的角距,β为台站方位角,Ω和Ω'为与计算和负荷 点 地 理 位置有关的函数,H(Ω', t)为海潮瞬时潮高。

2. 数值结果

作者采用齐温斯基和安德森(Dziewonski and Anderson)给出的地球密度和拉梅参数表,即PREM模型[4],计算了负荷形变系数。该模型是根据全球地震台网(WWSSN)资料进行反演研究得到的,这是迄今为止最为详细的模型。表1给出了相应数值。由表可知,随着n的增大,负荷勒夫数逐渐递减。与文献[2]的结果对比,可以发现高阶项偏差较大,这是由于两组模型的地壳上地幔弹性参数不同所致。表2给出了不同模型普通勒夫数值间的比较,其中G一B模型的结果引自文献[3]。由表可知,普通勒夫数低阶项偏差较小,这说明对于固体潮理论计算,各种模型的结果基本相同。均匀各向同性球对称模型对固体潮的响应要比负荷潮的响应更明显,因为固体潮的位移要通过地球本体的大部分,而负荷潮的位移只在地壳上地幔才比较明显。因此,不同模型和大陆底部地壳上地幔构造不同,它们对负荷潮的影响将大于固体潮的影响[6]。表3给出了重力和倾斜负荷弹性项格林函数,表中的归一化与文献[2]相同。图1给出了G一B和PREM模型间弹性项格林函数的比较。由图可知,格林函数是角矩的函数,当角矩小于1度时两者偏差较大,说明不同模型对负荷潮在近区有明显影响。

作者选取精度较高的Schwiderski全球海图进行褶积计算,获得重力和倾斜负荷结果(见表 4 和表 5)。其中A和 α 表示负荷潮振幅和相位,表 4 中 的 单位为微伽和度,表 5 中 的单位为毫伽和度。

3.结论

上述结果表明:

- (1)负荷勒夫数对地壳上地幔构造依赖性很强,表现在不同模型间的高阶负荷勒夫数偏差较大(表1)。
- (2)重力和倾斜负荷格林函数表征点质量负荷效应,它们是角距离的函数。不同模型 间的格林函数在角矩小于1度时变化明显,这是由于地壳上地幔构造不同所致。

PREM地球模型的负荷形变系数

N	- h'(n)	l'(n)	- k'(n)	nl'(n)	- nk' (n)
0	0.136900	0.000000	0.000000	-0.000000	0.000000
1	0.304270	0.113000	0.000000	0.113000	0.000000
2	0.986789	0.022383	0.307430	0.044765	0.614860
3	1.046701	0.069884	0.198131	0.209653	0.594392
4	1.046256	0.058860	0.134846	0.235439	0.539382
5	1.075385	0.046189	0.105268	0.230943	0.526342
6	1.129524	0.038431	0.090582	0.230584	0.543492
7	1.195140	0.033911	0.082164	0.237380	0.575145
8	1.264091	0.031096	0.076574	0.248767	0,612594
9	1,332533	0.029178	0.072421	0,262601	0.651787
10	1.398899	0.027774	0.069099	0.277745	0.690989
12	1.523705	0.025853	0.063916	0.310231	0.766997
15 -	1.691090	0.024147	0.058168	0.362211	0.872520
18	1.336462	0.023083	0.053698	0.415494	0.966559
20	1.922122	0.022517	0.051131	0.450343	1.022614
25	2.101412	0.021239	0.046611	0.530964	1.140276
36	2.364419	0.018483	0.036326	0.665400	1.307745
56	2.605006	0.014293	0.025678	0.800398	1,437968
100	2.836313	0.009061	0.014911	0.906133	1.491063
130	2.945723	0.007163	0.011490	0.931174	1.493680
180	3.113860	0.005291	0.008352	0.952421	1,503313
325	3.606599	0.003049	0.004927	0.991043	1.601362
42 5	3,925191	0.002428	0.004004	1.032055	1.701767
550	4.286013	0.001996	0.003327	1.097882	1.829919
750	4.763691	0.001590	0.002657	1.192705	1.992987
1000	5,215053	0.001255	0.002115	1.255344	2.114620
1800	6.193132	0.000697	0.001252	1.253866	2.253466
3000	7.274023	0.000424	0.000796	1.271801	2.387411
35 00	7.644162	0.000370	0.000698	1.296435	2.442878
4900	8.515737	0.000287	0.000528	1.407598	2.586376
10000	10.394571	0.000180	0.000292	1.798356	2.923339

表 2

不同地球模型求得的勒夫数

模 型	阶数n	h(n)	!(n)	k(n)
G—В	2	0.611400	0.083200	0.304000
-	3	0.289100	0.014500	0.094200
	4	0.174900	0.010300	0.042900
PREM	2	0.610054	0.084888	0.302596
	8	0.291731	0.014592	0.093637
	4	0.176915	0.010038	0.042061
	5	0.129908	0.008370	0.024634
	6	0.107548	0.006744	0.016961
	7	0.094964	0.005373	0.012796
	8	0.086765	0.004308	0.010187
	9	0.080820	0.003497	0.003396
	10	0.076193	0.002875	0.007091

-	•
	-7

PREM地球模型的格林函数

N	θ	$G^{E}(\theta) \times 10^{17}(a\theta)$	$T^{B}(\theta) \times 10^{12}(a\theta)^{2}$	N	θ	$G^{E}(\theta) \times 10^{17} (a\theta)$	TE(θ) ×1018(aθ)3
1	0.0001	-127,2551	49.4059	26	6.00	-11.4038	7.7894
2	0.0010	- 126,7553	49.4056	27	7.00	-10.7743	7.6045
3	0.01	-121.6330	49,2933	28	8.00	-8.9364	6.4746
4	0.02	-115,2477	48,5550	29	9.00	- 8,5887	4.4371
5	0.03	-112.6629	46.7247	30	10.0	-7,2225	3.9435
6	0.04	-108.7633	43.6146	31	12.0	-6.8488	6.2105
7	0.08	-103.7018	34,4282	32	16.0	-5.6024	4.4686
8	0.08	-95.3104	25,0900	33	20.0	- 4.2757	5.2853
9	0.10	- 82.9797	20.3675	34	25.0	- 3.1110	4.2382
10	0.16	-71,7312	26.9123	35	30.0	-2.5479	6.5095
11	0,20	- 59.2292	19.3072	3 6	40.0	-1.4981	5.8561
12	0.25	- 48,5218	17.5936	37	5 0.0	0.7643	4.5837
13	0.30	- 43.9456	18,3716	38	60.0	1.9067	2.3907
14	0.40	- 40.6126	20.8001	39	70.0	2.4101	-1.3089
15	0.50	- 37 . 4848	16.0330	40	80.0	1.2208	- 4.0421
16	0.60	- 33,8975	14.6888	41	90.0	0.9892	-4.9402
17	0.80	- 32.9219	14.5456	42	100.0	-1.4518	-7.3797
18	1.00	- 33,2804	18. 3717	43	110.0	-1.8832	- 9.8568
19	1.20	-28.6920	16.7168	44	120.0	-2.4964	-9.9152
20	1.60	-23.0362	15.2048	45	130.0	-2.55 98	-10.0610
21	2.00	-21.3973	15.9568	46	140.0	- 3.4951	-10.1478
2 2	2.50	-18.8137	14.9533	47	150.0	-3.2399	-8.5626
23	3.00	-16.7640	13.9404	48	160.0	- 4.6947	-6.1674
24	4.00	-14.1445	10.7719	49	170.0	-5.8075	- 3.5127
25	5.00	-12.2994	8.1284	50	180.0	-6.6005	0.0006

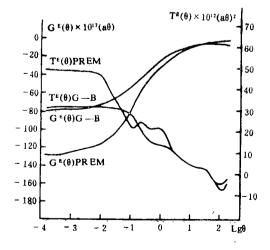


图1 G-B和PREM模型弹性项格林函数间的比较

-
- 4

海潮对重力固体潮观测的影响

台站	M2 it		S2波		O1波		K1波	
	A	α	A	ά	A	α	A	α
广州	1.266	- 59.7	0.364	- 76.0	1.353	-59.1	1.257	- 89.9
北京	0.304	39.4	0.213	18.2	$0.49\overline{5}$	8.9	0.534	-2.8
昆明	0.447	- 88.0	0.116	-151.7	0.401	-43.8	0,269	-80.4
兰州	0.063	-65.8	0.042	58.0	0.292	0.9	0.227	-3.0
乌市	0.305	-143.1	0.118	-179.7	0.138	53.0	0.157	92.3
武汉	0.596	-28.6	0.216	-27.4	0.667	-19.8	0.660	- 35.0
上海	1.402	-64.0	0.395	-79.5	1.252	-9.5	1.504	-27.1
沈阳	0.533	40.9	0.313	13.7	0.674	13.7	0.776	-1.5
泉州	2,723	-99.6	0.678	-126.8	1.708	- 40.5	1.889	-62.0
郑州	0,320	2.8	0.186	3.4	0.522	-6.6	0.522	-18.6

表 5

海潮对倾斜固体潮观测的影响

台	分	М	2波		S2波 O1波)1波	l I	(1波
站	盘	A	α	A	α	A	α	A	α
广州	EW	2.870	140.1	1.056	123.9	2.368	138.0	2.618	103.5
	NS	3.673	-90.7	1.345	-117.0	4.242	- 85.9	4.681	-121.8
北京	EW	0.981	-115.7	0.432	-151.6	0.512	-149.4	0.637	-172.2
	NS	0.530	-16.0	0.197	-8.4	0.504	- 59.7	0.496	-78.2
昆明	EW	1.213	-145.4	0.497	- 177.7	0.411	144.6	0.579	140.8
	NS	0.640	-92.6	0.268	-150.0	0.589	-99.7	0.614	-127.7
兰州	EW	0.694	-141.3	0.284	-166.1	0.326	-166.9	0.483	168.8
	NS	0.300	-50.4	0.072	-120.1	0.361	-76.0	0.359	-105.4
乌市	EW	0.367	-128.3	0.130	-144.5	0.145	-177.9	0.253	156.9
	NS	0.178	-102.4	0.098	-159.0	0.091	- 55.0	0.075	-174.7
武汉	EW	1.171	-178.4	0.488	162.4	0.842	-167.4	1.127	169.8
	NS	1.179	-54.4	0.335	- 89.1	0.790	-74.5	0.853	-97.6
上海	EW	7.837	82.1	3.115	36.0	3.316	-166.6	4.510	162.8
	NS	8.805	-46.8	3.641	- 87.5	1.445	- 25.7	2.071	-56.7
沈阳	EW	0.6 3 6	-124.5	0.335	-151.9	0.738	-133.3	0.899	-159.7
	NS	1.204	44.7	0.478	14.9	0.686	-57.1	0.715	-77.2
泉州	EW	8.074	62.0	2.368	3.9	2.913	179.5	3.869	158.2
	NS	22.30	-137.0	7.201	-164.3	7.197	- 74.8	9.611	-95.0
郑州	EW	1.009	-133.6	0.468	-165.9	0.592	-161.2	0.777	178.1
	NS	0.818	-40.7	0.218	-70.4	0.555	-65.9	0.584	- 85.5

- (3)海潮负荷对重力潮影响最大可达3微伽,对倾斜潮影响可达35毫秒,所以在应用固体潮观测资料时,应充分考虑海潮负荷影响。
- (4)不同模型引起的重力负荷差为10—15%,倾斜负荷差为15—30%,说明地壳和上地幔构造对负荷潮计算的影响较明显。

作者感谢李瑞浩研究员的帮助。

(本文1987年12月16日收到)

(国家地震局地震研究所 孙和平)

参 考 文 献

- (1) Longman, I. M., A Green's function for determining the deformation of the earth under surface mass loads, J. G. R., PP.485-496, 1963.
- (2) Farrell, W., Deformation of the earth by surface loads, Rev. Geophys Spale, Vol.10, 1972.
- (8) Melchior, P., The tides of the planet earth, Pergamon Press, 1978.
- (4)Dziewonski, A. D. and Anderson, D. L., Preliminary reference earth model, Phys. Earth Planet. Inter., Vol.25, PP.297-365, 1981.
- (5)李瑞浩, 重力学引论, 地震出版社, 1988.
- [6]许厚泽、毛伟建,不同地球模型对负荷潮汐改正的影响,地球物理学报, Vol.28, No.8, 1985.
- [7]孙和平、胡延昌,海潮负荷计算中几个问题的讨论,地壳形变与地震, Vol. 9, No. 1, 1989.

DEFORMATION OF THE ELASTIC EARTH TIDES CAUSED BY OCEAN LOADING

Sun Heping
(Institute of Seismology, SSB)