我国东南地区πg波的频散特征

谭爱娜 杨导声 刘 畅 王晓东

付建武 余亚华

(浙江省地震局)

摘要

本文利用1987年8月在江西省寻乌发生的三次5.0级以上 地震 的 记录 资料,讨论了我国东南地区πg波的传播特征。结果表 明: πg波 的 初 至 波 速 为 6.00km/s,与Press的结果相近;πg波有明显的频散特征,其卓越周期为0.6 --0.8秒,较多表现为正常频散,同时也有少量表现为反常频散;由πg波的 波 数及波峰的水平合成矢量得到的振幅辐射图象,基本上与弱非均匀介质辐射图 象相近;πg波各波数水平到时与垂直到时存在明显的到时差。

一、引 言

对纵导波的早期研究^[1-8]认为,纵导波的产生与地壳内低速层的存在有关。近年来 Aki^[4]认为,纵波频散的产生除了与地壳分层结构有关外,还与层内介质的不均匀性有密切 的关系。

我国的一些地震记录中也有π_s波显示,尤其是在我国东南部地区发生的地震,该区台 网可以记录到较多的清晰可辨认的纵导波,如π_s波、P_L波等。深入研究π_s波及其它 纵导波 的传播特征,对研究我国东南部地区的地壳结构有一定的意义。

本文利用1987年 8 月在江西省寻乌发生的三次5.0级以上地震的DD-1 短周期 地 震 仪 的记录,研究π。波的传播特征。

二、我国-些地震的纵波频散现象

所谓纵波频散,是指地震产生的纵波在介质中传播时,由于介质的不均匀等因素的影响而 产生的纵波的散射现象,在地震图中表现为P波段出现明显的波列特征。图1a给出了1982 年四川甘孜4.2级地震的SK地震仪的记录,图1b给出了1980年6月1日甘肃肃北5.6级地震 的SK地震仪的记录。

函 I πg波兴空に水区 a. 1982年8月24日四川甘孜4.2级地震 b. 1980年6月1日甘肃肃北5.6级地罩 Fig. 1 Typical records of the πg wave

一般由于π_s波振幅小,出现不甚规则而不易分辨。而我国东部台网记录的该区域内发生 的地震,其π_s波一般较清晰。图 2 给出了江西寻乌二次地震的记录图,图中π_s波显示较明显。

图 2 江西寻乌二次地震的πg波记录图 a.1987年8月2日5.0级地震 b.1987年8月15日5.0级地震 Fig. 2 Records of the πg wave of two earthquakes in Xunwu, Jiangxi Province

由图 2 可以看出, π_s 波波列持续3—5周。在本文所使用的资料中, π_s 波出现的最小震中 距 $\Delta = 4.66^\circ$,最大震中距 $\Delta = 7.6^\circ$ 。一般来说, π_s 波的垂直分量记录要较两个水平分量清晰, 波列明显。震中距较小的台站,如在乌溪江地震台($\Delta = 4.66^\circ$)记录中, π_s 波几乎与 P 波 同 时 到达,但有明显的 π_s 波波列存在(图 2 b)。在宁波台记录中,初至 π_s 波到达之前,有一明 显的大波动,而无明显的波列特征,其走时又与P 波相符。因而可利用 π_s 波的波列特征, 同时利用初至 π_s 波之前P 波的存在来辨认 π_s 波。

三、我国东部地区πg波的传播特征

为了研究我国东部地区π_α波的传播特性,本文利用1987年8月2日、3日、15日在江

20

第11卷

西省寻乌发生的三次 $M_L > 5.0$ 级地震的记录 资料(图2)研究 π_s 波的传播特征。在研究 中选用震中方位相近的新安 江台、乌 溪 江 台、湖州台(震中方位差 $\Delta \alpha < 3^\circ$)及宁 波 台、南京台(震中方位差 $\Delta \alpha < 20^\circ$)的DD— 1短周期地震仪记录,图3给出各台站位置 及震中的分布。地震参数、台站位置及各台 震中方位角见表1、2。其中地震参数的选 取根据国家地震局1987年8月月报数据。

1.π.波的初至速度 Vπ。

 π_{g} 波的初至波速 $\nabla \pi_{gi} = \frac{\Delta_{i}}{T\pi_{gi}}$,式中

 Δ_1 为该台震中距, $T\pi_r$ 为 π_r 波走时, $T\pi_r = t\pi_r - t_0$,其中 $t\pi_r$ 为 π_r 波的初至到时, t_0 为地震的发震时刻。

图3 震中和台站分布图

Fig. 3 Distribution of epicentres and stations

		4
2	•	1
1		•

厩 源 参 数 矛

发展日期	发展时刻	雇中	位置	震级	震源深度
年月日	时分秒	фе	λ.	ML	h
1987 8 2	17 07 34.9	25°02′	115°36′	5.8	19
1987 8 8	07 19 12.5	25*02'	115'36'	5.3	19
1987 8 15	00 59 33.3	.25°04′	115*36'	5.2	

表 2

各台震中方位角

	台 站	, 度	中距	震	震中方位角				
台站	φ .	λ.	皮	km	α'	$\alpha = 180^{\circ} + \alpha'$	仪器型号		
乌溪江	28*42'00''.0	118.49,00,.0	4.66	518	38.78	218 . 78	DD-1		
新安江	29*26' 58''	119*16'12''	- 5.49	610	37°. 32	217*.32	DD-1		
湖州	30°50′ 34′′.2	120*15/42/	7.12	792	36°.45	216*.45	DD-1		
宁波	29*58'03''.0	121°31′12′′	7.20	801	43.18	228*.18	DD1		
南京	32°02′06′′	118*51'16''	7.56	841	23.01	203.01	DD-1		

表 3 列出了测得的 $V\pi_r$ 值。由表 3 可以看出,江西寻乌地震的 π_r 波的 初 至 速 度 $V\pi_r$ 为 5.80-6.18km/s,取其平均值为6.00km/s,与Press和Gutenberg所测得的结果相近。

2.π.波的频散特征

表4给出了用峰谷法⁽⁵⁾测得的每个波峰和波谷的到时。图4为各 台测得的三次 地震的π, 波到时和波数图,图中分别给出了实测值和拟合值。拟合相关系数r均在0.98以上,以γ= 0.99居多,标准离差一般在±0.18左右,最大达±0.30,最小为±0.03。

1

_	-
and the second	_
-	_
_	_

22

Vπ_s 数 据 表

发辉日期	台站	震中距∆(km)	tπg	Τπε	$V\pi_{g}(km/s)$
1987年8月2日	新安江	610	17-09-18.2	103.3	5.91
1987年8月2日	湖州	792	17-09-45.8	130.9	6.05
1987年8月2日	宁波	801	17-09-49.3	134.4	5.96
1987年8月2日	南京	841	17-09-50.9	136.0	6.18
1987年8月8日	新安江	610	07-20-53.1	100.6	6.08
1987年8月8日	湖州	79?	07-21-23.4	130.9	6,05
1987年8月15日		518	01-01-20.3	87.0	5,96
1987年8月15日	新安江	610	01-01-37.9	104.6	5,80
19o7年8月15日	湖州	792	01-02-03.9	130.6	6.06
1987年8月15日		801	01-02-07.6	134.3	5,96

表 4

松县		会長	क्षे वि					n	(x)				
an 7	地及日	9 A	tel CH	1	2	8	4	5	6	7	8	9	10
10	新安江台	у	17-09	18.6	18.9	19.2	19.6	19.9	20.3	20,7	21.0		
8月2日		ŷ		18.57	18.90	19,24	19.58	19.93	°0.29	20.60	21,02		
		T /2		0.3287	0.3364	0.3406	0, 3466	0,3528	0.3591	0. 36F/6	0,3720		
		Τπg	1	103.7	104.0	104.3	104.7	105.0	105.4	105.8	106.1		
		UT		5.88	б.87	5.85	5.83	5.80	5.78	5.77	5.75		•
02	湖州台	у	17-09	45.9	46.3	46.9	47.4	47.7	48.0	48.1			
8月2日		ŷ		45.68	46.54	47.05	47.41	47.69	47.92	48.11			
		T/ 2		1.247	0,6233	0.4153	0.3116	0.2493	0.2078	0.1781			
		Τπς		130.8	131.6	132.2	132.5	132.8	133.0	133, 2			
		UT		6.06	6.02	5.99	5.98	5.96	5.95	5.95			
03	宁波台	у	17—09	49.8	50.1	50.5	51.0	51.3	51.7	52.0	52.7	53.5	
8月2日		ŷ		49.67	50 .0 9	50,52	50.95	51. 39	51,82	52,27	52.72	53.17	
		T/2		0.4216	0.4254	0,4293	0.4333	0,4372	0.4413	0, 4453	0.4494	0,4535	
		Τπg		135.8	136.4	136.8	137.2	137. 7	138.1	138.6	139.0	139.5	
		UT		5.90	б.88	5.85	5.84	5.82	5.80	5.78	5.77	Б.74	
04	南京台	у	17-09	51.0	51.4	51,6	51.9	52.0					
8月2日		ŷ		50.98	51, 41	51.67	61.85	51,99					
		T/2		0.6294	0.3147	0.2098	0.1574	0,1259					
		Τπ		136.1	136.5	136.8	137.0	137.1					
		UT		6.18	6.16	6.15	6.14	6.13					

4

3 8

1

¥

续表	4

() 日		*	स वि	n (x)									
496 TT	地成百	9 8	UAL CA	1	2	8	4	5	6	7	8	9	10
05	新安江台	У	07-20	54.8	54.9	55.2	55.6	56.0	56.4		·		
8月8日		ŷ	î	54.65	54.98	55.3	55,65	55.98	56.32				
		T/2		0.3289	0.3309	0.3329	0.3349	0.3369	0.3389				
		Τπg		102.2	102.5	102.8	103.2	103.5	103.8				
		UT ·		5, 97	5.95	5.93	5.91	5.89	5.88				
06	湖州台	у	07-20	24.0	24.6	25.0	25.5	25.8	26.1	26.3			
8月8日		ŷ		23.84	24.70	25.21	25.57	25,85	26.07	26.27			
		T/2		1.249	0.6246	0.4164	0.3123	0.2498	0.2082	0.1784			
		Τπε		130.5	130.8	131.9	132.3	132.6	132.8	133.0			
		UT		6.07	6.06	6,00	5.99	5.97	5.96	5.95			
07	乌溪江台	у	01-01	20.6	21.0	21.4	21.8	22.4	22.6	23.1	24.0		
8月15日		ŷ		20.56	20.98	21.41	21.85	22.31	22.78	23,26	23.95		
	-	T/2		0.4145	0.4260	0.4378	0.4500	0.4626	0.4753	0.4884	0.5020		
		Τπg		87.26	87.68	88.11	88.55	89.01	89,48	89.96	90.45		
1		UT		5.94	5.91	5.88	5.85	5.82	5.79	5.76	5.73		
08	新安江台	у	01-01	38.7	39.2	39.6	39.9	40.2	40.4				
8月15日		ŷ		38.62	39.28	39.69	39.94	40.16	40, 33				
		T/2		0.9561	0.4780	0.3187	0.2390	0.1912	0.1594	-			
		Τπε		105.3	106.0	106.4	106.6	106.9	107.0				
		UT		5.80	5.76	5.79	5.72	5.71	5.68				
09	湖州台	у	01-02	4.0	4.8	5.4	6.0	6.4	7.0	7.3	7.6		
8月15日		ŷ		3.71	4.94	5.66	6.17	6.59	6.89	7.16	7.40		
		T /2		1.77	0.886	0,591	0.443	0.354	0,295	0.253	0.222		
		Τπε	943 - 143	129.8	131.0	132.1	132.3	132.7	133.0	133. 3	133.5		
		UT		6.10	6.04	6.00	5.99	5.97	5.96	5.94	5.93		
10	宁波台	У	01-02	8.0	8.6	9.3	9.9	10.2	10.7	10.9			
8月15日		ŷ		7.76	8.84	9.47	9.92	10.26	10.55	10.79	.		
		T /2		1.55	0.777	0.518	0.388	0.311	0.259	0.222	<u> </u>		
		Τπε		134.5	135.5	136.2	136.6	137.0	137.2	137.5		 	
	<u>-</u>	UT	- <u> </u>	5.96	5.91	5.88	5.86	5.85	5.84	5,83			

由图 4 各台 拟合曲线 求出 备时 刻斜 率即为该时刻的 半周期 (见表 4), 並由 此作出 频散 曲线 (见图 5)。在正常频散情况下, π_g 波到时及周期变化较大, T_{max}约为 2秒, T_{mi} 约

1.1.1

图 4 π_s波到时和波数图 a.1987年8月2日地震 b.1987年8月8日地震 c.1987年8月15日地震

Fig. 4 Patterns of the π_s wave arrival time and wave number

为0.3秒,其最大振幅对应的卓越周期为0.6—0.8秒,而对于反常频散,其周期变化则不大,周期随到时变化的差仅为0.1秒,卓越周期相差不大,约为0.7—0.8秒。

3.π.波的群速度U(T)

由群速度公式U₁(T) = $\Delta_i/T\pi_{s_1}(T)$ 求得不同周期的群速度值(表4),U_{(T})变 化范围为 5.68—6.18km/秒。由表4可以看出,波列中群速度U_{(T},极值 所 对 应 的波数振 幅,不是该波列的最大振幅,即波列中最大振幅不一定是埃利相。这一结果与对某些面波的 研究结果是一致的。

4.π.波的振幅辐射图象

使用各波数垂直向周期作为相应的水平向波数的周期,並作出地动位移水平合成矢量图 (图6)。图6中各点即为各波数水平合成矢量值,数字表示波数,实线为各台站的震中方 位线。图6表明各点基本在各台的震中方位线附近,而在与震中方位线成90°方位上则没 有。

£

第11卷

图 6 πg波水平振幅合成矢量图 Fig. 6 Composite vector of horizontal component amplitude of the πg wave

5.π,波水平与垂直分量的相移

图 2 表明π。波主要在垂直方向上较明显,而两水平分量记录较弱。为研究水平 与 垂 直 分量到时的差异,选取记录较清晰且可进行波数追踪的记录,将水平和垂直分量各波数到时 列入表 5 中。由表中可以看到,湖州台的1987年 8 月 3 日5.3级地震的记录,以及湖 州 台、 新安江台的1987年 8 月15日5.2级地震的记录中水平与垂直向波列到时虽有差 异,但仍在其 量图读数误差范围之内。而乌溪江台的1987年8月2日5.8级地震记录中,波数1的东西向 与垂直向记录到时差达0.3秒。湖州台的1987年8月2日地震记录中,东西向与垂直向各波 数到时明显存在差异,其时差 $\Delta t = 0.3-0.5$ 秒,这显然是不能用读数误差来解释的。该记 录中两分向到时差还表明,水平向的波数1与垂直向波数2到时相吻合,其余各波数也同样 存在此特点。因此1987年8月2日湖州台的地震记录表明, π_a 波的两分向相位差为 $\frac{\pi}{2}$,其 余记录因存在量图误差而不能得到满意的结论。

给导	台站	波列	波 数 (ni)								
- ₩ - ↓ ₽ - ₩	<u>н</u> н		n1	п2	18	n4	пв	ne	17		
2	湖州台	E-W	17-09-45.9	- 46.2	- 46.7	- 47.1	- 47.6	- 48.0			
		U-D	17-09-45.4	- 45.9	- 46.3	- 46.7	-47.2				
8	宁波台	E-W	17-09-49.4	- 50, 0	- 50, 5	- 50, 1	- 51, 2	- 51.6	- 52.1		
		U-D	17-09-49,7	- 50.0	- 50.5	- 50.9	- 51. 3	- 51.6	- 52.1		
6	湖州台	N-S	07-20-22.9	- 23.6	- 24.1	-24.6	- 25.1				
		UD	07-20-23.0	-23.7	- 24.3	-24.6	-25.1				
8	新安江台	E-W	01-01-38.6	- 39.1	- 39.5	- 39.9	- 40.2				
		U-D	01-01-38,4	- 59.0	- 39.б	- 39.9	- 40.2				
. <u>9</u>	湖州台	E-W	01-02- 3.9	- 4.8	- 5.3	- 6.1	- 6.3	-7.0			
		U-D	01-02- 4.0	- 4.7	- 5.2	- 6.2	- 6.4	-7.2			

表 5

٩

四、讨论与结论

1.一般认为,π_a波是地壳低速层内不均匀P波迭加而生成的纵导波,本文研究证实了这 一认识。由于低速层内波速低于其上层或下层,当地震原生纵波入射角达到临界角时,会 产生全反射,即折射,上下层地震射线沿低速层界面传播。当原生波入射角大于临界角时, 所产生的折射波一方面沿界面传播,同时也沿与界面垂直的方向衰减。这种沿某一方向传播, 而沿另一方向衰减的波称为不均匀波。π_a波就是这种不均匀P波在低速度层内迭加而生成的 纵导波,因而π_a波具有不均匀P波的特性。

设S为不均匀P波的波振幅,则波矢量可写为:

S(ap, 0, $-i\sqrt{\alpha^2 p^2 - 1}$) $e^{-w\sqrt{P^2 - \frac{1}{\alpha^2}Z}}e^{-iw(px-t)}$

其中p为地震射线参数, $p = \frac{\sin i}{\alpha}$, α 为纵波波速, i为地震射线 入 射 角, 取x方向为界面的延伸方向, z方向为界面垂直方向。可以看出水平和垂直分向必存在一相位差, 且 其 相位差等于 $\pi/2$ 。因此不均匀P波的一个重要特性是产生水平和垂直向的相移。本文的研究结 果证实了上述结论。

π,波水平和垂直向相移的存在,还有待更多的实测资料来证实。对π,波水平和 垂 直向 相移的研究,将会深化对π,波的生成机制的认识。

2.AK; (4)在研究非均匀介质地震波时,假设地球内散射波是由原生波和非均匀介质 相互作用而产生的,由于介质的非均匀性比较弱(可称为弱非均匀介质),因此散射波仍 遵循不受扰介质的波动方程,此时散射源与外加体力等效。

在弱非均匀介质中,当P波沿x方向入射时,由于速度(α)及弹性 常数(λ、μ)梯度 的扰动,使远场P波、S波的振幅产生辐射图象(见图 7)。由图 7 可见,速度α和弹性系数 μ的不均匀性的作用像一个单力或力偶,使远场散射P波振幅辐射基本沿震中方位线或 其 相 反方向。

本文实测π_{*}波振幅辐射图 (见图 6) 与图 7 中由于速度α或弹性系数μ的扰动而产 生 的 散射P波图案是相似的。由此我们认为π_{*}波的产生与介质的弱非均匀性有关。

图7 当P波沿x方向入射时,由三种局部非 均匀性散射形成的远场P波和S波辐射图案

Fig. 7 Radiation pattarn by three kinds of local heterogeneity scattered distant field of the p and s wave when incident P wave is x1 direction

3.本文的研究表明,π_x波的频散特征是明显的,其群速度是可以测得的。若选取合适 的记录,也可以测得相速度C(T)。对π_x波频散的研究,为测定地壳介质参数提供了一条 新的途径。

4•π**•**波一般在震中距 5[°]—10[°]范围内记录较明显。中国东南各省地震较少,利 用 小 **震 尾波测定**介质品质因子的方法在该地区内显然是不适用的。由于π**•**波在该 地 区 记 录明显, **因此**利用π**•**波测定介质的衰减参数的方法,对于测定该区的介质参数具有特殊意义。

5.中国东部许多台的地震图上有π,波的清晰记录,表明在本文讨论的地震 波 传 播路径 内的广大地区的地壳中部存在着比较连续的低速层。

本研究得到肖志江同志、何鸣同志及李于民同志的大力协助,特此致谢。

(本文1988年11月20日收到)

参考文献

(1)Press, F. and Ewing, Earthquake surface wave and crustal structure, Geolsoc. Am. Spec. Papers, Vol. 62, 51-60, 1955.

(2)Gutenbery, B., Channel waves in the earth's crust, Geophysics, Vol.20, 283-294, 1955. (8)Bâth, M., A continental channel wave, guided by the intermediate layer in the crust, Geobos. Para.e.ayce., Vol.38, 19-31, 1957. (4)安艺敬一、P.G.理查兹,定量地震学理论和方法,李钦祖、邹其嘉等译,地震出版社, 1986. (5)付淑芳、刘宝城、李文艺,地震学教程,地震出版社, 1980.

DISPERSION CHARACTERISTIC OF THE π_s WAVE IN SOUTHEASTERN CHINA

Tan Aina, Yang Daosheng, Liu Chang, Fu Jianwu, Yu Yahua, Wang Xiaodong (Seismological Bureau of Zhejiang Province)

Abstract

Using the data of the three earthquakes $(M_L > 5.0)$ which occurred in Xunwu, Jiangxi Province in August 1987, we have discussed **a** travel characteristics of the π_g wave in Southeastern China. The results show that: The first velocity is 6.0km/s, it is close to Press's results; the π_g wave has shown normal dispersion, and a few are no-normal dispersion; its paramount period is 0.6-0.8 second. Using the composite amplitude of horizontal component of the π_g wave, we have obtained the radiation pattern of the π_g wave, it is basically close to radiation pattern in weak heterogeneous medium. There is the D value of time of incidence (Phase Shift) between horizontal time **and** vertical time of the π_g wave number.

: