利用 P波到时确定近震震源参数的循环优化迭代法的误差分析

钟廷 姣

(一)前 言

利用 P波到时确定近震震源参数,文献[1]给出了一种迭代解法——循环优化迭代法。 用这种方法对五个参数φ,λ,T₀,h,υ全面进行优化时,需要分别算出所得近似解的 误差, 只当它们全部满足精度要求时,才能做为我们所需要的近似解,否则,还要对不满足精度要 求的量继续进行优化。如何计算所得近似解的误差,该文并没有真正解决这个问题。

本文从误差方程出发,利用"误差集中"的思想,导出了估计所得近似解的误差——均 方根差σ,σ,σ,σ,σ,πο,σ,和σ,的计算公式,利用这些公式可以计算出 所 得 近似解的误差大 小,因而这些公式可以做为循环优化迭代法的一个重要组成部分。

(二) 误差方程和均方根差

如所周知, \overline{P} 波理论走时为 $T_{i}^{i} = \sqrt{\frac{\Delta_{i}^{2} + h^{2}}{V}}$, $i = 1, 2, \dots, \overline{P}$ 波理论到时为

 $T_i' + T_0 = \sqrt{\Delta_i^2 + h^2} / V + T_0$, i = 1, 2, …n, 其中 V 为 P 波速度, Δi 为 第 i 个台站的 震中距, h 为震源深度, T₀为发震时刻, n 为台站个数。由于Δ_i = Δ_i (φ, λ), 这里 φ 和λ 依次为第i 个台站的经度和纬度, 从而 T_i' = T_i' (φ, λ, h, V)。当φ, λ, h, V 和 T₀ 依 次 有偏差δφ, δλ, δh,δv 和δT₀时,有

$$\delta (T_{i}' + T_{\circ}) = \delta T_{i}' + \delta T_{\circ} = \frac{\partial T_{i}'}{\partial \phi} \delta \phi + \frac{\partial T_{i}'}{\partial \lambda} \delta \lambda + \frac{\partial T_{i}'}{\partial h} \delta h + \frac{\partial T_{i}'}{\partial V} \delta v + \delta \tau_{\circ},$$

于是可以建立n个误差方程:

$$\frac{\partial T_{i}}{\partial \phi} \delta \phi + \frac{\partial T_{i}}{\partial \lambda} \delta \lambda + \frac{\partial T_{i}}{\partial h} \delta h + \frac{\partial T_{i}}{\partial v} \delta v + \delta T_{o} = f_{i}, \quad i = 1, 2, \dots n \quad (1)$$

◆本工作完成于1979年未,发表时作了必要的补充。

第4卷

这里f₁为第i个台站的残差,它是由于诸参数φ,λ,h,v和T_•存在着偏差而引起的。 为了书写方便,我们令

 $K_i = \frac{\partial T_i'}{\partial \phi}, M_i = \frac{\partial T_i'}{\partial \lambda}, Q_i = \frac{\partial T_i'}{\partial h}, R_i = \frac{\partial T_i'}{\partial v}$ $i = 1, 2, \dots n$

(1)写可成
 K_iδφ+M_iδλ+Q_iδh+R_iδv+δT_o=f_i i=1, 2…n
 (1)'
 将(1)'写成问量形式

$$\begin{pmatrix} K_{1} & M_{1} & Q_{1} & K_{1} & 1 \\ K_{2} & M_{2} & Q|_{2} & R_{2} & 1 \\ \dots & \dots & \dots & \dots \\ K_{n} & M_{n} & Q_{n} & R_{n} & 1 \end{pmatrix} \begin{pmatrix} \delta \varphi \\ \delta \lambda \\ \delta h \\ \delta v \\ \delta T_{o} \end{pmatrix} = \begin{pmatrix} f_{1} \\ f_{2} \\ \vdots \\ \vdots \\ f_{n} \end{pmatrix}$$
(2)

当n>5时,一般说来(2)是一矛盾方程组。

将(2)的两端同乘以(2)的系数矩阵的转置矩阵,得

$$\begin{pmatrix} K_{1} & K_{2} & \cdots & K_{n} \\ M_{1} & M_{2} & \cdots & M_{n} \\ Q_{1} & Q_{2} & \cdots & Q_{n} \\ R_{1} & R_{2} & \cdots & R_{n} \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} K_{1} & M_{1} & Q_{1} & R_{1} & 1 \\ K_{2} & M_{2} & Q_{2} & R_{2} & 1 \\ K_{3} & M_{3} & Q_{3} & R_{3} & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ K_{n} & M_{n} & Q_{n} & R_{n} & 1 \end{pmatrix} \begin{pmatrix} \delta \phi \\ \delta \lambda \\ \delta h \\ \delta v \\ \delta T_{n} \end{pmatrix} = \begin{pmatrix} K_{1} & K_{2} & \cdots & k_{n} \\ M_{1} & M_{2} & \cdots & M_{n} \\ Q_{1} & Q_{2} & \cdots & Q_{n} \\ R_{1} & R_{2} & \cdots & R_{n} \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} f_{1} \\ f_{2} \\ f_{3} \\ \vdots \\ f_{n} \end{pmatrix}$$

$$(3)$$

记

$$(G, H) = \sum_{i=1}^{n} G_{i}H_{i}, \qquad (G) = \sum_{i=1}^{n} G_{i},$$

则(3)可简写为

(K,K)	(K,M)	(K,Q)	(K,R)	(K)\	/δφ \		(K,F)	h	
(M,K)	(M,M)	(M,Q)	(M,R)	(M)	δλ		(M,F)		
(Q,K)	(Q,M)	(Q,Q)	(Q,R)	(Q)	δh	=	(Q,F)		(4)
(R,K)	(R,M)	(R,Q)	(R,Ř)	(R)	δv		(R,F)		· .
(K)	(M)	(Q)	(R)	n /	(ST.). ((F)		

其中K=(K₁, K₂, …K_a)^T, M=(M₁, M₂, …M_a)^T, …, F=(f₁, f₂,…f_a)^T。 由(4)精确解出δφ, δλ, δh, δv和δTo是复杂的, 不便于应用; 实际上, 由于公式 的近似性和公式中诸量的近似性, 精确解出它们也是没有必要的。为了简化计算, 我们采用 "误差集中"的思想, 分别由(4)依次解出δφ, δλ, δh, δv和δTo的"最大偏差"(为 了方便, 最大偏差仍用相应符号表示)。这里"最大偏差"的含意, 例如, 使(4)的右端 为(1, 0, 0, 0, 0)^T的δφ, δλ, δh, δv和δTo, 其中的δφ就是δφ的"最大偏差"。 同样, 使(4)的右端为(0, 1, 0, 0, 0)^T的δφ, δλ, δh, δv和δTo, 其中的δλ就

 $B\delta\lambda$ 的"最大偏差"。其余类推。显然、如果n维向量 E=(1,1•••,1)^T. K. M, Q, R线性无关, 残差向量F与K共线, 且与M, Q, R, E正交, 则(K, F) \neq 0, (M, F)=(Q, F)=(R,F)=0,如果再规定(K, F)=1,就可得到"最大偏差" $\delta \phi$ 。可见,最大偏差 $\delta \phi$ 正是通过把残差F"集中"到K方向上而得到的。"最大偏差" $\delta \lambda$, δ h. δ v和 δ T_o. 亦可用类似方法解释。

现用克来姆规则求"最大偏差" $\delta\phi$, $\delta\lambda$, δh , $\delta v \pi \delta T_{\circ\circ}$ 4 . 记

$$P_{\bullet} = \frac{1}{\delta \phi}, P_{\lambda} = \frac{1}{\delta \lambda}, P_{\lambda} = \frac{1}{\delta h}, P_{v} = \frac{1}{\delta v}, P_{T_{\circ}} = \frac{1}{\delta T_{\circ}}, \quad (5)$$

$$P_{\varphi} = \frac{D}{D_{1}}, P_{1} = \frac{D}{D_{2}}, P_{1} = \frac{D}{D_{3}}, P_{\gamma} = \frac{D}{D_{4}}, P_{\tau_{0}} = \frac{D}{D_{5}},$$
 (6)

其中

			4			
	. /	(K,K),	(K,M),	(K,Q),	(K,R),	(K) \`
х		(K,M),	(M,M),	(M,Q),	(M,R),	(M)
	D =	(K,Q),	(Q,M),	(Q,Q),	<u>(</u> Q,R),	(Q)
		(K,R),	(R,M,)	(R,Q),	(R,R),	(R)
	· • •	(К)	(M),	(Q)	(R.)	n)
		(M,M)	(M,Q)	(M,R)	(M)	·
•	· ·	(M,Q)	(Q,Q).	(Q,R)	(Q) ·	
	$D_1 =$	(M,R)	(R,Q)	(R,R)	(R)	
	<u>`.</u>	(M)	(Q)	(R)	n)	
с ⁴ е – е	:	(K,K)	(K,Q)	(K,R)	(K)	
	Par a	(K,Q)	(Q,Q)	(Q,R)	(Q)	
	D 2 =	(K,R)	(R,Q)	(R,R)	(R)	
· · · ·		(K)	(Q) ·	(R)	n ·)	
		(K,K)	(K,M)	(K,R)	(K)\	
		(K,M)	(M,M) [·]	(M,R)	(M)	
30 a 1	D 3 =	(K,R)	(R,M)	(R,R)	(R)	
	((K)	(M)	(R)	n)	
· · · ,	•	(K,K)	(K,M)	(K,Q)	(K)	**
· · · · ·	·	(K,M)	(M,M)	(M,Q)	(M)	
, .	D 4 =	(K,Q)	(Q,M)	(Q,Q)	(Q)	-
		(K)	(M)	(Q)	n)	: •
• • • • • • •		((K,K)	(K,M)	(K,Q)	(K,R)	
	•	(K,M)	(M,M)	(M,Q)	(M,R)	-
	D 5 =	(K,Q)	(Q,M)	(Q,Q)	(Q,R)	
· · · · ·		(K,R)	(R,M)	(R,Q)	(R,R)	
,		1			•	

由此,可立即算出诸参数的均方根差;

$$\sigma_{\phi} = \sigma_{o} / \sqrt{P_{\bullet}}, \ \sigma_{1} = \sigma_{o} / \sqrt{P_{1}}, \ \sigma_{k} = \sigma_{o} / \sqrt{P_{k}}, \ \sigma_{v} = \sigma_{o} / \sqrt{P_{v}}, \ \sigma_{T_{\bullet}} = \sigma_{o} / \sqrt{P_{T_{\bullet}}}$$

$$(7)$$

为 \overline{P} 波到时的标准误差,上式中n为台站个数; n_1 为未知量个数,在上面的叙述中, $n_1=5$;

$$F = \sum_{i=1}^{n} \left(T_i - T_{\bullet} - \frac{\sqrt{\Delta_i^2 + h^2}}{V} \right)^2$$

为残差。

而

据此,在求得所需要的解 ϕ , λ , h, V和T₀后,就可以定出实际参数值所在区间。区间的两个端点依次为

 $\phi' = \phi \pm \sigma_{\phi}, \lambda' = \lambda \pm \sigma_{\lambda}, h' = h \pm \sigma_{h}, V' = V \pm \sigma_{v}, T_{0}' = T_{0} \pm \sigma_{T},$ (8) 计算(4)中诸量时,我们用关系式 到时差分 亦量差分 近似计算相应的偏导数。

(三) 计算实例

用循环优化迭代法对五个参数 ϕ , λ , h, V和T₀全面优化后,将所得结果用(二)中所 述公式算出误差 σ_{ϕ} , σ_{λ} , σ_{h} , σ_{v} 和 $\sigma_{r_{0}}$,将这些值与经验值相比, σ_{h} 和 $\sigma_{r_{0}}$ 往往偏大,而 σ_{v} 则 较小。这时,可固定V,对其余四个参数 ϕ , λ , h和T₀,再次应用循环优化迭代法,迭代结 束后,再按四个参数的情形($n_{1} = 4$)进行误差计算。这时须将(1)中 $\frac{\partial T_{i}}{\partial v}$ $\delta v 项 去$ 掉,从而须将(4)中与R有关的项去掉,在(6)式中须将行列式中与V有关的行和列去 $掉。这样行列式也就相应地降一阶。计算结果表明,所得结果的误差,特别是<math>\sigma_{h}$ 和 σ_{v} ,有 显著减少。

例1 某地震,有n=12个台站观测资料,经过选台,去掉4个,于是n=8。计算结果如下:

参数值	n ₁ = 5 的误差	n ₁ =4时的误差
$\phi = 28°52'50''$	σ_{ϕ} = 2.1 (KM)	$\sigma_{\phi}'=1.3$ (KM)
$\lambda = 103^\circ 39' 40''$	$\sigma_{\lambda} = 4.2$ (KM)	$\sigma_{\lambda}' = 1.5 \text{ (KM)}$
$T_0 = 48.3(sec)$	$\sigma_{ro} = 1.9$ (sec)	$\sigma_{T0}' = 0.2$ (sec)
V = 5.7 (KM/sec)	$\sigma_{\star} = 0.3 (\text{KM/sec})$	(V固定为5.7(KM/sec)
h = 5 (KM)	$\sigma_{h} = 25.6$ (KM)	$\sigma_{\mathbf{h}}' = 7.2$ (KM) .

 $\sigma_{TP}' = 0.5$ (sec)

残差F=0.0883。

 $T_0 = 16.1$ (sec)

例 2 n=12的另一地震观测资料,经选台,去掉3个台,故n=9,计算结果为:
 参数值 n₁=5时的误差 n₁=4时的误差
 φ=28°48′40^w σ_φ=2.4(KM) σ_φ′=2(KM)
 λ=103°41′30^w σ₁=3.7(KM) σ₁′=3.1(KM)

 $\sigma_{T0} = 1.04$ (sec)

h = 32 (KM)	$\sigma_{h} = 9.8 (KM)$	$\sigma_{\rm h}' = 6 \ (\rm KM)$
V = 6.16(KM/se	c) $\sigma_v = 0.117 (\text{KM/sec})$	(V固定为6.16KM/sec)。
残差F=0.08。		
例 3 n=11的某地震观测	资料,经选台,去掉4台,	于是n = 7。\计算结果为
参数值	n ₁ = 5 时的误差	n ₁ = 4 时的误差
• \$ = 28°47'50 "	$\sigma_{\diamond} = 2.5$ (KM)	$\sigma_{\phi}' = 1.9$ (KM)
$\lambda = 103^{\circ}40'50''$	$\sigma_{1} = 5.6 (KM)$	$\sigma_{1}' = 4.1 (KM)$
$T_0 = 18$ (sec)	$\sigma_{T0} = 204$ (sec)	$\sigma_{T0}' = 0.67$ (sec)
h = 40 (KM)	$\sigma_{h} = 14.7$ (KM)	$\sigma_{\mathbf{b}}' = 6.5 \text{ (KM)}$
$\dot{V} = 5.58 (KM/sec$) $\sigma_v = 0.21$ (KM/sec)	(V固定为5.58KM/sec)。
→ → → → → → → → → → → → → → → → → → →		

(本文1982年1月30日收到)

ана. Спарта 1970 г. – 1970 · · · ·

(1) 冯德益、钟廷姣、盛国英 利用^P 波到时确定近地震震源参数的一种迭代解法及其在波 速异常研究中的应用 西北地震学报,第1卷,第2期(1979)

(2)С. N. Голененкий, Г. N. Перевалова, Прочрамма определения чипочентров. близких землетрясений на ЭВМ по наблюдениям сейсмических станций прибайкалья, сб. «Изучение Сейсмич. Опастности», ФАН, Ташкент 1971.

ERROR ANALYSIS FOR THE PERIODIC OPTIMUM ITERATION METHOD FOR DETERMINAGION OF THE HYPOCENTRE PARAMETERS OF NEAR EARTHQUAKES BY USING THE P-WAVE TRAVEL TIMES

Zhong Ting-jiao

Abstract

In this paper we have established calculation formulas to estimate errors, σ_{ϕ} , σ_{λ} , σ_{T0} , σ_{b} and σ_{v} , of the approximate solution, starting from error equation using the idea of "error concentration". These formulas can be used as the important constituent of the periodic optimum iteration method.