杨祖龙,苏有文.基于磁流变阻尼器与弹性基础隔震耦合建筑的地震响应分析[J].地震工程学报,2018,40(5):932-940.doi:10. 3969/j.issn.1000-0844.2018.05.932

YANG Zulong, SU Youwen, Seismic Response of a Coupled Building with Magneto Rheological Damper and Elastic Base Isolation[J]. China Earthquake Engineering Journal, 2018, 40(5):932-940. doi:10.3969/j.issn.1000-0844.2018.05.932

基于磁流变阻尼器与弹性基础隔震耦合 建筑的地震响应分析

杨祖龙1,苏有文2

(1. 内江职业技术学院 土木工程系,四川 内江 641000; 2. 西南科技大学 土木工程与环境学院,四川 绵阳 621010)

Seismic Response of a Coupled Building with Magneto Rheological Damper and Elastic Base Isolation

YANG Zulong¹, SU Youwen²

(1. Department of Civil Engineering, Neijiang Vocational & Technical College, Neijiang 641000, Sichuan, China;
2. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China)

Abstract: To reduce the severe structural damage caused by the collision of adjacent buildings during an earthquake, in this study, we applied the Lyapunov method as a control algorithm to conduct a stability analysis to determine the best controller design. Here, we compare and analyze the performances of semi-active and two types of hybrid control schemes. The results reveal that a hybrid control strategy is more effective than semi-active control in mitigating the seismic response. The selection of an appropriate hybrid control scheme can reduce the bearing displacement, and thus effectively prevent impact. In addition, we found that an increase in the damping and strength of the isolation leads to an increase in the base shear force and reduces the bearing displacement. The selection of an appropriate parameter value can ensure that the resulting response is within a limited range.

Keywords: semi-active control; hybrid control; base isolation; MR dampers; lead rubber bearing; laminated rubber bearing

收稿日期:2017-08-20

基金项目:国家科技支撑计划项目子课题(2015BAL03B03-05);国家级大学生创新创业训练计划资助项目(201610619025)

第一作者简介:杨祖龙(1973-),男,本科,高级工程师,注册监理工程师,主要研究方向:工程管理。E-mail:yangzl215@163.com。

0 引言

随着经济发展,建筑物的规模越来越大,相邻建 筑间的相互影响会极大地加强地震的破坏力,造成 巨大的损失。为了减小地震中的损失,采用半主动 控制和无源器件等措施可减小建筑物的地震响 应^[1],并且基础隔离作为无源器件中的一种有效的 减震措施已有诸多研究^[2-3]。Su等^[4]研究了不同隔 震设备的性能,指出弹性支座在建筑物遭受地震激 励时,能够有效控制结构响应。研究发现铅芯支座 有很好的抗震性能^[5-6],对减小响应有一定的作用。

半主动控制是一种适应性强、稳定性高且耗能低的减震措施^[7-8]。其中磁流变阻尼器(MR)^[9-10]在 耦合控制中得到了广泛应用,在减小相邻建筑地震 中的响应起到了较好的效果,通过改变阻尼器的参 数就能够优化减震效果^[11-13]。近几年将基础隔离和 半主动控制结合提出了混合控制方案,有益于与已 存在基础隔离建筑相邻建筑的减震控制^[14-15]。

本文研究对比了3种耦合建筑控制方案的性能,并对设备参数的影响进行了研究,如隔离参数 (隔震阻尼和周期),以及阻尼器参数(指令电压和阻 尼器位置)。

1 结构模型

1.1 建筑模型

本文研究的结构模型为如图 1 所示的耦合剪切 型建筑模型。两座建筑层间通过 MR 阻尼器连接, 且每层都在同一高度。建筑 1 为 *m* 层,建筑 2 为 *n* 层,且 *m* > *n*。图 1(b)建筑 1 采用弹性支座隔离。

图 1 耦合建筑模型 Fig.1 Model of the coupled building

假设地板的水平阻力非常大,不会对阻尼器的 性能有显著影响,且上层结构在地面运动过程中不 会翻倒。另外,本文研究未考虑土壤结构的相互作 用。则结构系统的运动控制方程为:

$$[m]{u} + [c]{u} + [k]{u} + [k]{v} + [$$

$$[\mathbf{P}_{I}]\{\mathbf{F}_{b}\}-[\mathbf{m}]\{\mathbf{r}\}\mathbf{u}_{g}$$
(1)

式中:[*m*]、[*c*]和[*k*]分别是质量,阻尼和刚度矩阵。相对于地面的位移矢量为:

$$\{u\} = \{u_b, u_1, u_2, u_3, \cdots, u_{m+n+1}\}$$
 (2)

式中: u_b 为支座位移; $\{u\}$ 和 $\{u\}$ 分别为加速度和速 度矢量; $\{r\}$ 是所有元素都相等的影响向量; u_g 是地 面加速度; $[P_d]$ 和 $[P_1]$ 分别是阻尼器和隔离器的 位置矩阵; $\{F_d\}$ 是阻尼力, $\{F_b\}$ 是支持力。

1.2 MR 阻尼器动态特性

本文采用 Spencer 等提出的唯象模型模拟 MR 阻尼器的动态行为^[13]。该模型预测力的控制方程为:

$$F_{d} = c_{1}\dot{x} + k_{1}(u_{d} - x_{0})$$
(3)
$$\dot{z} = -\gamma |u_{d} - \dot{x}|(z)|z|(n-1) -$$

$$\beta(u_d - \dot{x}) |z|^n + A_d(u_d - \dot{x})$$
(4)

$$\dot{x} = \left\{ \frac{1}{(c_0 + c_1)} \right\} \left\{ \alpha_0 z + c_0 u_d + k_0 (u_d - x) \right\} \quad (5)$$

式中:u_a 是阻尼器的位移;x 是阻尼器的内部伪位 移;z 是阻尼器的滞后位移;k₁ 是蓄能器刚度;c₀ 是 控制阻尼器在大速度时的粘滞阻尼;c₁ 是用于在低 速时在力-速度循环中产生非线性滚降的粘性阻 尼; k_0 是控制大风速下阻尼器的刚度; x_0 是线性弹 簧 k_1 的初始位移; a_0 , γ , β ,n和 A_d 是控制磁滞回线 形状的阻尼器参数,点(•)表示相对于时间的一阶 导数。模型参数取决于指令电压, c_0 , c_1 , a_0 如下:

$$c_{0} = c_{0a} + c_{0b}U \tag{6}$$

$$c_{01} = c_{1a} + c_{1b}U \tag{7}$$

$$\alpha_0 = \alpha_{0a} + \alpha_{0b} U \tag{8}$$

式中:U 是一阶滤波器输出,如方程(9),模拟达到流 变平衡和 MR 阻尼器中电磁体驱动的动态过程,方 程(9) 是必需的。

$$\dot{U} = -\eta \left(U - V \right) \tag{9}$$

式中:1/η为一阶滤波器的时间常数。

1.3 控制算法

本文采用 Lyapunov 直接法进行控制器的稳定 性分析和设计,使用 MATLAB 实现算法。Lyapunov 函数,记为 $L(\{z_1\})$,它必须是系统状态 $\{z_1\}$ 的正定函数。根据 Lyapunov 理论的基本思想,如 果 $L(\{z_1\})$ 的变化率是负半定函数,原点必须是稳 定状态。因此,在确定控制规律时,所选择的输入函 数必须使L 为负,本文的 Lyapunov 函数形式如下:

$$L(\{z_1\}) = \frac{1}{2} || \{z_1\} ||_{p}^{2}$$
(10)

$$\| \{\boldsymbol{z}_1\} \|_p = [\{\boldsymbol{z}_1^T\} [\boldsymbol{P}_L] \{\boldsymbol{z}_1\}]^{\frac{1}{2}}$$
(11)

式中: $[P_L]$ 是实对称正定矩阵,在线性系统下,为确保 L 为负定, $[P_L]$ 由式(12)确定:

$$[\boldsymbol{A}^{T}][\boldsymbol{P}_{L}] + [\boldsymbol{P}_{L}][\boldsymbol{A}] = -[\boldsymbol{Q}_{\boldsymbol{P}}] \qquad (12)$$

对于正定矩阵, $[Q_P]$ 是单位矩阵。求解状态空间方程的 Lyapunov 函数导数如下:

$$\dot{L} = -\frac{1}{2} \{ \boldsymbol{z}_{1}^{T} \} [\boldsymbol{Q}_{\boldsymbol{P}}] \{ \boldsymbol{z}_{1} \} + \\ \{ \boldsymbol{z}_{1}^{T} \} [\boldsymbol{P}_{\boldsymbol{L}}] [\boldsymbol{B}_{\boldsymbol{d}}] \{ \boldsymbol{F}_{\boldsymbol{d}} \} [\boldsymbol{B}_{\boldsymbol{b}}] \{ \boldsymbol{F}_{\boldsymbol{b}} \} + \\ \{ \boldsymbol{z}_{1}^{T} \} [\boldsymbol{P}_{\boldsymbol{L}}] [\boldsymbol{E}] \boldsymbol{u}_{g}$$
(13)

在确定控制规律时,MR 驱动器的指令电压(v)为零或最大,即 $v \in [0, v_{max}]$ 对应于一组固定的状态。

 $v = v_{\text{max}}H(\{-z_1^T\}[P_L][B_d]\{F_d\}[B_b]\{F_b\})$ (14) 式中: $H(\cdot)$ 为单位阶跃函数,当 $H(\cdot) > 0$ 时,MR 驱动器的指令电压最大($v = v_{\text{max}}$),否则指令电压为 零(v = 0)。阻尼器的位移{ u_d } 和速度 \dot{u}_d 如下式, 下标为阻尼器在连接层的位置。

$$u_{d(m-n+i)} = \left[u_{(m-n+i)} - u_{(m+n+i)} \right]$$
(15)

$$\dot{u}_{d(m-n+i)} = \left[\dot{u}_{(m-n+i)} - \dot{u}_{(m+n+i)} \right]$$
(16)

1.4 隔离系统的动态特性

目前,常使用两种弹性隔离系统,即叠层橡胶支

座和铅芯橡胶支座。

1.4.1 叠层橡胶支座(LRB)

假设 LRB 为线性系统,支持力为:

$$F_b = c_b \dot{u}_b + k_b u_b \tag{17}$$

式中: u_b 和 u_b 分别为基层的速度和位移; c_b 和 k_b 是 支座阻尼和刚度。

1.4.2 铅心橡胶支座(NZ系统)

支座的受力变形为非线性,支持力为:

$$F_b = c_b \dot{u}_b + \alpha_b k_b u_b + f_z \tag{18}$$

式中:f_z是由铅芯引起的恢复力:

$$f_z = (1 - \alpha_b) F_y q z_b \tag{19}$$

$$\alpha_b = \omega_b^2 M_t q / F_y \tag{20}$$

式中:F_y是隔离器屈服强度,z_b是无量纲滞后位移, 用滞后模型来求解:

 $q\dot{z}_{b} = -\beta |v_{b}|z_{b}|\dot{z}_{b}|^{n-1} - \tau v_{b}|z_{b}|^{n} + Av_{b}$ (21) 式中:q 是支座位移, β 和 τ 是控制磁滞回线的形状 和大小加强系数,n 和 A 是整数常数。

1.5 隔离参数

选择适当的系统参数:刚度(k_b),阻尼(c_b)和 屈服强度(F_y),能够得到理想的隔震周期(T_b),阻 尼比(ξ_b)和屈服强度系数(F_o):相互关系如下:

$$T_{b} = 2\pi \sqrt{\frac{M_{t}}{\alpha_{b}k_{b}}}$$
(22)

$$\boldsymbol{\xi}_{b} = \frac{c_{b}}{2M_{i}\boldsymbol{\omega}_{b}} \tag{23}$$

$$F_{0} = \frac{F_{y}}{W_{t}} \tag{24}$$

式中: M_t 和 W_t 分别是建筑物的总质量和重量,包括 隔离层, x_b 是隔离系统的固有频率。

1.6 求解过程

通过 New-mark 逐步法求解运动控制方程(1), 假设加速度在一小段时间间隔内线性变化。使用四 阶 Runge-Kutta 方法求解方程(4)(5)(19)和(21)。

MR 阻尼器的输入电压由 Heaviside 函数决定 (14),并通过滤波方程(9)。阻尼力使用公式(3),支 撑力为方程(17)或(18)。

2 结果分析

本文耦合建筑模型为两个相邻的钢筋混凝土结构建筑,分别为10 层和8 层,记为建筑1 和建筑2。 两栋建筑的层间高度相同,楼层刚度和楼面重量相同。通过 MR 阻尼器刚性连接,在建筑1 基础上安装了弹性基础隔离系统。研究在4 次地震:Imperial Valley(1940), Loma Prieta(1989), Kobe(1995) 和 North-ridge(1994)中, 不同控制方案建筑的减震 特性。图 2 为 4 次地震的地震动位移和加速度反应谱。

图 2 地震动位移和加速度反应谱

2.1 不同控制方案抗震性能的影响

3 种耦合建筑控制方案分别为:(1)半主动控制,即相邻建筑通过 MR 阻尼器层间相连;(2)混合控制 1,除了 MR 阻尼器内联,建筑 1 的基础采用叠层橡胶支座隔离;(3)混合控制 2,MR 阻尼器内联, 建筑 1 的基础采用铅芯橡胶隔离系统,分别记为 Semi-active,Hytrid 1,Hytrid 2。图 3~图 5 分别为 3种不同控制方案中, $v_{max} = 6$ V, $T_b = 2$ s, $n_b = 0.1$

ig.3 Time-varying response of displacement a the top floor of building 1 和 F₀=0.05 时,建筑 1 的顶层位移、顶层加速度和 基础剪力的时变响应。从图中可以看出,各参数响 应明显小于半主动控制。

建筑1的楼层最大位移和加速度如图6所示, 与半主动控制相比,混合控制下观察到响应显着降低。分析了建筑2的楼层最大位移和加速度,发现 混合控制响应与半主动控制控制相比,只有略微 下降。

Fig.5 Time-varying response of shear force at the first floor of building 1

表 1 为 $v_{\text{max}} = 6$ V, $T_b = 2$ s, $n_b = 0.1$, $F_0 = 0.05$ 时, 在 4 次地震中, 不同控制下耦合建筑的顶层位移

(*u_f*)和加速度(*a_f*)、支座位移(*u_b*)及基础剪力(*B_{sy}*)的 变化,括号中为相对于半主动控制混合控制响应减小 的百分比。从表 1 中可以看出,与半主动控制相比,混 合控制响应显着降低。建筑 1 的响应减少幅度在 80% ~90%,而建筑 2 为 1% ~7%。另外,值得注意的是混 合控制 1 和混合控制 2 的顶层响应和底部剪力降低非 常接近,而混合控制 2 支座位移减少的更多。

2.2 设备参数对抗震性能的影响

图 7 为 $v_{max} = 6 V, T_b = 2 s 和 F_0 = 0.05 时, 隔 震阻尼对建筑 1 的底部剪力和支座位移的影响。从 图中可以看出,随着隔震阻尼增加,基础剪力会稍有 增加,而支座位移会减小。同时可以看出,混合控制 1 的支座位移小于混合控制 2。$

图 8 为 $v_{max} = 6 V$, $n_b = 0.1 和 F_0 = 0.05$ 时,隔 离周期对建筑1底部剪力和支座位移的影响。从图 8(a)可以看出,随着隔周周期的增加,基础剪力迅速 下降,到2 s 后趋于稳定。图 8(b)表明,支座位移会 随着隔震周期的增加有所增加,不同的地震动会在 不同的周期上产生峰值,且受地震动影响较大。

2.3 阻尼器指令电压及位置对抗震性能的影响

选择 3 个电压值(3,6 和 9 V)研究阻尼器指令 电压对控制性能的影响,结果如表 2、3 所列,可以发 现,阻尼器电压的增加有利于位移、加速度和支座位 移的减小。

Fig.6 Peak displacement and peak acceleration at each floor of building 1

表1 不同控制方式耦合建筑的性能比较

Table 1 Comparison between performances of the coupled building with different control methods

业要	故古屿亡		建筑1			建筑 2	
地辰	喗詛呬应	Semi-active	Hybrid 1	Hybrid 2	Semi-active	Hybrid 1	Hybrid 2
	u_f/cm	5.702	0.624(89.05)	0.706(87.61)	2.939	2.711 (7.75)	2.720 (7.45)
Imperial million 1040	$ \frac{2}{8} \frac{4}{8} \frac{1}{6} \frac{2}{8} \frac{2}{9} \frac{2}{9} \frac{2}{9} \frac{1}{9} 1$	0.889 (3.99)					
hefe $eefe$ $eefe$ $eefe$ $eefe$ $eefe$ $eefe$ $Hybrid 1$ $Hybrid 2$ $Semi-active$ $Hybrid 1$ $Hybrid 2$ Imperial valley,1940 u_f /cm 5.702 $0.624(89.05)$ $0.706(87.61)$ 2.939 2.711 (7.75) 2.720 Imperial valley,1940 a_f/g 1.064 $0.168(84.21)$ $0.172(83.63)$ 0.926 0.891 (3.77) 0.889 u_b/cm 0.700 $0.101(85.57)$ $0.111(84.14)$ 0.566 0.531 (6.18) 0.533 u_b/cm 14.22 $2.299(83.83)$ $2.175(84.70)$ 5.795 $5.610(3.19)$ 5.601 $u_{b/cm}$ 14.22 $2.299(83.83)$ $2.175(84.70)$ 1.655 $1.639(5.37)$ 1.632 $u_{a/cm}$ 14.22 $2.299(83.83)$ $2.175(84.70)$ 1.685 $1.639(5.37)$ 1.632 $u_{a/cm}$ 14.22 $2.299(83.83)$ $0.296(83.28)$ 1.082 1.075 0.64 1.074 1.075 1.632 <td< td=""><td>0.533 (5.83)</td></td<>	0.533 (5.83)						
	u_b/cm	-	6.433	5.991	建筑 2brid 2Semi-activeHybrid 1Hybrid 2 $3(87.61)$ 2.939 2.711 (7.75) 2.720 (7.45) $2(83.63)$ 0.926 0.891 (3.77) 0.889 (3.99) $1(84.14)$ 0.566 0.531 (6.18) 0.533 (5.83) 3.991 5 (84.70) 5.795 5.610 (3.19) $5.601(3.34)$ 7 (82.61) 1.655 1.639 (5.37) 1.632 (1.38) 5 (83.28) 1.082 1.075 (0.64) 1.074 (0.74) 23.43 6 (91.50) 10.72 10.53 (1.77) 10.52 (1.86) 5 (90.72) 1.944 1.924 (1.02) 1.925 (0.97) 1.72 7 (86.77) 12.95 12.60 (2.70) 12.58 (2.85) 4 (86.11) 3.449 3.384 (1.88) 3.383 (1.91) 5 (84.00) 2.313 2.270 (1.86) 2.271 (1.81)		
u_f/cm 14.22 2.299 (83.83) 2.175 (84.70) Loma Prieta, 1989 a_f/g 2.284 0.422 (81.52) 0.397 (82.61) B_{sy}/W 1.771 0.320 (81.93) 0.296 (83.28) u_b/cm - 26.99 23.43	u_f/cm	14.22	2.299 (83.83)	2.175 (84.70)	5.795	5.610 (3.19)	5.601(3.34)
	1.655	1.639 (5.37)	1.632 (1.38)				
	B_{sy}/\mathbf{W}	1.771	0.320 (81.93)	0.296 (83.28)	1.082	1.075 (0.64)	1.074 (0.74)
	u_b/cm	-	26.99	23.43	-	-	建筑 2 Tybrid 1 Hybrid 2 11 (7.75) 2.720 (7.45) 91 (3.77) 0.889 (3.99) 31 (6.18) 0.533 (5.83)
	u_f/cm	15.86	1.316 (91.70)	rrd 1Hybrid 2Semi-activeHybrid 1Hybrid 2 89.05) $0.706(87.61)$ 2.939 2.711 (7.75) 2.720 (7.45) 84.21) $0.172(83.63)$ 0.926 0.891 (3.77) 0.889 (3.99) 85.57) $0.111(84.14)$ 0.566 0.531 (6.18) 0.533 (5.83) 433 5.991 (83.83) 2.175 (84.70) 5.795 5.610 (3.19) $5.601(3.34)$ (81.52) 0.397 (82.61) 1.655 1.639 (5.37) 1.632 (1.38) (81.93) 0.296 (83.28) 1.082 1.075 (0.64) 1.074 (0.74) $.99$ 23.43 (91.70) 1.348 (91.50) 10.72 10.53 (1.77) 10.52 (1.86) (90.62) 0.176 (90.72) 1.944 1.924 (1.02) 1.925 (0.97) $.25$ 11.72 (86.90) 2.067 (86.77) 12.95 12.60 (2.70) 12.58 (2.85) (86.71) 0.374 (86.11) 3.449 3.384 (1.88) 3.383 (1.91) (84.45) 0.286 (84.00) 2.313 2.270 (1.86) 2.271 (1.81)			
地震 峰值响应 Ex.1 Ex.7 Ex.7 <the< td=""><td>2.673 (0.48)</td></the<>	2.673 (0.48)						
	1.924 (1.02)	1.925 (0.97)					
	u_b/cm	-	13.25	11.72	-	-	-
	u_f/cm	15.63	2.047 (86.90)	2.067 (86.77)	12.95	12.60 (2.70)	12.58 (2.85)
Northridge 1004	a_f/g	2.694	0.358 (86.71)	0.374 (86.11)	3.449	3.384 (1.88)	3.383 (1.91)
norunnage, 1994	B_{sy}/\mathbf{W}	1.788	0.278 (84.45)	0.286 (84.00)	2.313	2.270 (1.86)	2.271 (1.81)
	地震 峰值响应 $EEW1$ Hybrid 1 Hybrid 2 Semi-active Hybrid 1 $valley, 1940$ a_f/g 1.064 0.624(89.05) 0.706(87.61) 2.939 2.711 (7.75) a_f/g 1.064 0.168(84.21) 0.172(83.63) 0.926 0.891 (3.77) b_{sy}/W 0.700 0.101(85.57) 0.111(84.14) 0.566 0.531 (6.18) u_b/cm - 6.433 5.991 - - a_f/g 2.284 0.422 (81.52) 0.397 (82.61) 1.655 1.639 (5.37) b_{sy}/W 1.771 0.320 (81.93) 0.296 (83.28) 1.082 1.075 (0.64) u_b/cm - 26.99 23.43 - - a_f/g 2.693 0.232 (91.38) 0.275 (89.78) 2.686 2.673 (0.48) b_{sy}/W 1.898 0.178 (90.62) 0.176 (90.72) 1.944 1.924 (1.02) u_b/cm - 13.25 11.72 - - $cidge_1,1994$ a_f/g 2.694 <	-					

考虑阻尼器位置对抗震性能的影响,分别记为 Case 1,所有相邻楼层相连;Case 2,只有第 2,4,6 和 8 层相连;Case 3,仅有第 2,第 5 和第 8 层相连。通 过层间位移、基础剪力和阻尼力研究了阻尼器位置 对抗震性能的影响进行,结果如表 4 和 5。从表中 可以发现,3 种情况下地震响应变化不大,说明减少 阻尼器的数量对控制性能的影响不大。

3 结论

地震中相邻建筑物之间的相互影响会扩大地震 带来的损失,这一直是该领域专家研究的热点。本 文研究了半主动控制和两种混合控制的减震效果。

图 8 隔震周期对建筑 1 基础剪力和最大支座位移的影响

Fig.8 Effect of the isolation period on the base shear and peak bearing displacement of building 1

表 2 阻尼器指令电压对建筑 1 控制系统性能的影响

Table 2	Influence of	the damper	command	voltage or	i control s	system	performance	of building	1

抽雲	修店响应	Semi-active 阻尼器指令电压/V			Hybrid 1	1 阻尼器指令	≽电压/V	Hybrid 2 阻尼器指令电压/V			
地辰	呼诅咐应	3	6	9	3	6	9	3	6	9	
	u_f/cm	5.812	5.702	5.602	0.635	0.625	0.617	0.722	0.707	0.691	
Imperial valley 1940	a_f/g	1.074 3	1.064	1.055 3	0.169 9	0.168 0	0.166 3	0.172 7	0.172 9	0.172 9	
Imperial valley, 1940	B_{sy}/\mathbf{W}	160.37	267.6	366.94	139.121	231.40	316.69	133.088	221.882	304.34	
	u_b/cm	-	-	-	6.650	6.433	6.228	6.134	5.991	5.853	
	u_f/cm	14.45	14.22	14.014	2.332	2.300	2.268	2.205	2.176	2.148	
Loma Prieta 1989	a_f/g	2.297	2.284	2.276 3	0.428 4	0.422 8	0.417 5	0.400 6	0.397 9	0.395 2	
Lonia Tricta, 1505	B_{sy}/\mathbf{W}	347.5	584.51	805.86	244.43	415.07	577.20	235.139	399.983	557.916	
	u_b/cm	-	-	-	27.524	26.998	26.480	23.861	23.430	23.010	
	u_f/cm	16.14	15.725	15.63	1.338	1.316	1.295	1.370	1.349	1.328	
Koba 1005	a_f/g	2.749	2.693	2.651 6	0.227 8	0.232 6	0.244 0	0.273 8	0.275 7	0.280 8	
Kobe, 1995	B_{sy}/\mathbf{W}	404.7	669.86	919.57	363.350	623.31	864.87	377.34	649.598	913.21	
	u_b/cm	-	-	-	13.530	13.252	12.981	11.959	11.725	11.493	
	u_f/cm	15.66	15.63	15.608	2.079	2.047	2.018	2.099	2.067	2.035	
Northridge 1004	a_f/g	2.685	2.694 4	2.705 0	0.361 9	0.358 8	0.365 0	0.368 6	0.374 7	0.380 9	
Northinge, 1994	B_{sy}/\mathbf{W}	479.8	823.11	1116.8	501.530	869.25	1239.7	506.38	873.322	1233.20	
	u_b/cm	-	-	-	23.019	22.573	22.153	21.374	20.943	20.539	

表 3 阻尼器指令电压对建筑 2 控制系统性能的影响

Table 3 Influence of the damper command voltage on control system performance of building 2											
山田	修适响应	Semi-active 阻尼器指令电压/V			Hybrid 1	阻尼器指令	电压/V	Hybrid 2 阻尼器指令电压/V			
地辰	**************************************	3	6	9	3	6	9	3	6	9	
Imperial valley, 1940	u_f/cm	2.972	2.940	2.917	2.840	2.712	2.616	2.844	2.720	2.611	
imperial valley,1940	a_f/g	0.934	0.926	0.918	0.913	0.891	0.869	0.912	0.889	0.866	
Lome Priete 1080	u_f/cm	5.768	5.795	5.949	5.728	5.611	5.503	5.72	5.601	5.494	
Lonia i neta 1505	a_f/g	1.685	1.655	1.627	1.677	1.639	1.604	1.673	1.632	1.595	
Kobe, 1995	u_f/cm	11.02	10.72	10.46	10.91	10.53	10.17	10.91	10.53	10.166	
Kobe, 1995	a_f/g	2.774	2.686	2.613	2.767	2.673	2.584	2.767	2.673	2.585	
Northridge 1004	u_f/cm	13.01	12.95	12.90	12.80	12.60	12.41	12.80	12.607	12.411	
101 mildge, 1334	a_f/g	3.483	3.449	3.416	3.443	3.383	3.324	3.443	3.383	3.325	

杨祖龙,等:基于磁流变阻尼器与弹性基础隔震耦合建筑的地震响应分析

表 4 阻尼器位置对建筑 1 控制系统性能的影响

Table 4 Influence of damper location on control system performance of building 1

事業	修佶响应。	Semi-active				Hybrid 1		Hybrid 2		
地辰	平胆門儿	Case1	Case2	Case3	Case1	Case2	Case3	Case1	Case2	Case3
地震 峰値响应 Semi-active - Imperial valley,1940 u_r /cm 0.907 1 0.922 3 0.927 4 0 F_d /kN 267.66 278.61 282.35 5 B_{sy} /W 0.700 9 0.710 3 0.710 3 0.710 3 0 u_b /cm - - - - - - $Loma$ Prieta,1989 F_d/kN 584.515 605.18 612.15 - u_b/cm - - - - - - k_{bc} /cm - - - - - - - k_{bc} /cm -	u_r/cm	0.907 1	0.922 3	0.927 4	0.108 7	0.112 5	0.113 5	0.126 4	0.129 5	0.130 3
	231.40	242.02	245.44	221.88	231.30	234.46				
Imperial valley, 1940	B_{sy}/\mathbf{W}	0.700 9	0.710 3	0.710 3	0.101 3	0.101 5	0.101 5	0.111 5	0.110 7	0.110 4
	u_b/cm	-	-	-	6.4334	6.7073	6.7785	5.991	6.17	6.216
Loma Prieta, 1989	u_r/cm	2.297 1	2.339 4	2.353 9	0.399 3	0.408 9	0.411 4	0.379 5	0.387 7	0.389 8
	F_d/kN	584.515	605.18	612.15	415.07	426.51	429.62	399.98	410.08	413.07
	B_{sy}/\mathbf{W}	1.771 5	1.798 4	1.808 2	0.320 1	0.324 6	0.325 6	0.296 4	0.300 6	0.301 6
	u_b/cm	-	-	-	26.997	27.660	27.820	23.430	23.984	24.123
Keba 1005	u_r/cm	2.444 2	2.460 6	2.471 2	0.217 8	0.223 7	0.225 1	0.222 1	0.227 1	0.228 5
	F_d/kN	669.81	696.38	713.92	623.31	641.73	647.37	649.60	660.13	673.21
Robe , 1555	B_{sy}/\mathbf{W}	1.898 0	1.909 0	1.912 1	0.177 7	0.179 6	0.180 0	0.177 4	0.174 9	0.175 5
	u_b/cm	-	-	-	13.259	13.607	13.695	11.725	12.033	12.112
	u_r/cm	2.2927	2.3020	2.3049	0.3388	0.3462	0.3480	0.3425	0.3505	0.3522
Northridge 1004	F_d/kN	823.11	850.36	858.50	869.25	914.85	908.59	873.32	878.09	896.64
Northinge, 1334	B_{sy}/\mathbf{W}	1.788 6	1.782 4	1.78 13	0.278 0	0.280 3	0.28 10	0.286 5	0.28 9	0.282 9
	u_b/cm	-	-	-	22.579	23.118	23.248	20.943	21.453	21.585

表 5 阻尼器位置对建筑 2 控制系统性能的影响

Table 5 Influence of damper location on control system performance of building 2

き しょうしょう あんしょう あんしょう あんしょう しょうしん あんしょう しょうしん あんしょう しょうしょう しょう	修值响应。	Semi-active				Hybrid 1		Hybrid 2		
地辰	● 电响应	Case1	Case2	Case3	Case1	Case2	Case3	Case1	Case2	Case3
Imperial wellow 1040	u_r/cm	0.9071	0.9223	0.9274	0.1087	0.1125	0.1135	0.1264	0.1295	0.1303
Imperiar vancy, 1940	B_{sy}/\mathbf{W}	0.7009	0.7103	0.7103	0.1013	0.1015	0.1015	0.1115	0.1107	0.1104
Loma Prieta, 1989	u_r/cm	2.2971	2.3394	2.3539	0.3993	0.4089	0.4114	0.3795	0.3877	0.3898
	B_{sy}/\mathbf{W}	1.7715	1.7984	1.8082	0.3201	0.3246	0.3256	0.2964	0.3006	0.3016
Kaha 1005	u_r/cm	2.4442	2.4606	2.4712	0.2178	0.2237	0.2251	0.2221	0.2271	0.2285
Robe,1555	B_{sy}/\mathbf{W}	1.8980	1.9090	1.9121	0.1777	0.1796	0.1800	0.1774	0.1749	0.1755
Northridge 1004	u_r/cm	2.2927	2.3020	2.3049	0.3388	0.3462	0.3480	0.3425	0.3505	0.3522
101 mildge, 1994	B_{sy}/W	1.7886	1.7824	1.7813	0.2780	0.2803	0.2810	0.2865	0.2829	0.2829

研究发现,与半主动控制相比,基础隔离和内联阻尼 器的混合控制是一种有效的响应控制策略。根据数 值研究结果可得出以下结论:

(1) 与半主动控制相比,本文所提出的混合控制方案在地震响应缓解方面更为有效。而且,混合控制2支座位移小,因此将更有效地防止冲击。

(2)选择合适的隔离周期值是为了保持基础剪 切和轴承位移在可接受的范围内

(3)增加隔震阻尼和强度会导致基础剪力增加 和支座位移减小。因此,选择适当参数能够保证两 个响应在合适的范围内。

参考文献(References)

[1] 田洁,王克成.相邻建筑物减震措施研究[J].工程力学,1996, 13(a01):706-710.

TIAN Jie, WANG Kecheng. Research on Seismic Measures for Adjacent Buildings[J]. Engineering Mechanics, 1996, 13(a01): 706-710.

- [2] 辛杰,胡其高,阮征.一种新型基础减震措施的探讨[J].建筑结构,2010,40(增刊 2):55-57.
 XIN Jie,HU Qigao,RUAN Zheng.Discussion on a New Type of Foundation Damping Measures[J].Building Structure,2010,
- 40(Supp2):55-57.
 [3] 王斌,刘之洋,王庆利.多层框架橡胶垫减震结构的动力分析
 [J].工业建筑,1999,29(6):9-12.
 WANG Bin,LIU Zhiyang,WANG Qingli.Dynamic Analysis of Multistory Frame Isolation Structure Using Rubber Bearing
 [I].Industrial Construction,1999,29(6):9-12.
- [4] SU L.AHMADI G.TADJBAKHSH I G.A Comparative Study of Performances of Various Base Isolation Systems, Part I: Shear Beam Structures [J]. Earthquake Eng Struct Dynam, 1989,18(1):11-32.
- [5] 王建强,耿佳硕,赵卓.铅芯橡胶支座多向受力力学性能试验研 究[J].铁道工程学报,2017,34(11):57-62,87.

WANG Jianqiang, GENG Jiashuo, ZHAO Zhuo. Experimental Study on Mechanical Properties of Lead Rubber Bearing under Multi-directional Loading [J]. Journal of Railway Engineering Society, 2017, 34(11):57-62,87. [6] 卢丹,刘文光,秦川,等.国产铅芯隔震支座的极限性能试验研究[J].结构工程师,2016,32(2):146-151.
 LU Dan,LIU Wenguang,QIN Chuan,et al.Research on Criti-

cal Performance of Domestic Lead Rubber Bearings[J].Structural Engineers, 2016, 32(2):146-151.

- [7] LU L Y.LIN T K.JHENG R J.et al. Theoretical and Experimental Investigation of Position-controlled Semi-active Friction Damper for Seismic Structures[J].Journal of Sound and Vibration, 2018, 412:184-206.
- [8] SYMANS M D, CONSTANTINOU M C.Semi-active Control Systems for Seismic Protection of Structures; State-of-the-art Review[J].Eng Struct, 1999, 21:469-487.
- [9] 胡财宝,丁建国.基于模糊控制的 MR 阻尼器在结构抗震中的应用研究[J].世界地震工程,2014,30(4):269-274.
 HU Caibao, DING Jianguo. Research on Application of Fuzzy Control-based MR Damper to Structural Earthquake Resistance[J]. Word Earthquake Engineering, 2014, 30(4):269-274.
- [10] BHARTI S D, DUMNE S M, SHRIMALI M K.Seismic Response Analysis of Adjacent Buildings Connected with MR Dampers[J].Eng Struct, 2010, 32: 2122-2133.
- [11] BHASKARARAO A V, JANGID R S. Seismic Analysisof Structures Connected with Friction Dampers[J].Eng Struct,

2006,28:690-703.

University, 2016.

- [12] 张辉东,王元丰,基于能量分析的复阻尼模型结构抗震性能
 [J].沈阳工业大学学报,2011,33(4):445-450,467.
 ZHANG Huidong, WANG Yuanfeng. Earthquake Resistant
 Performance of Structure with Complex Damping Model
 Based on Energy Analysis[J].Journal of Shenyang University
 of Technology,2011,33(4):445-450,467.
- [13] Spencer Jr BF, DYKE SJ, SAIN M K, et al. Phenomenological Model for Magnetorheological Dampers [J]. J Eng Mech ASCE, 1997, 123(3): 230-238.
- [14] 许庆虎,王建国,康小方,等.地震激励下参数不确定的相邻建 筑结构重叠分散保性能混合控制方法[J].应用力学学报, 2017,34(4):615-621,810.
 XU Qinghu, WANG Jianguo, KANG Xiaofang, et al. Hybrid

Dispersion-preserving Hybrid Control Method for Adjacent Building Structures with Uncertain Parameters under Seismic Excitation[J].Chinese Journal of Applied Mechanics, 2017, 34 (4):615-621,810.

[15] 陈锐.既有建筑隔震加固中的双向受剪及防碰撞问题研究
[D].南京:东南大学,2016.
CHEN Rui. Research on Biaxial Shear and Anticollision in Seismic Isolation of Existing Buildings[D].Nanjing:Southeast