张淑云,周杰,黄磊,等.近断层地震作用下 RC 框排架结构易损性研究[J].地震工程学报,2021,43(2):369-374.doi:10.3969/j. issn.1000-0844.2021.02.369

ZHANG Shuyun, ZHOU Jie, HUANG Lei, et al. Seismic Vulnerability Analysis of RC Frame-Bent Structures Subjected to Near-fault Ground Motions[J]. China Earthquake Engineering Journal, 2021, 43(2): 369-374. doi: 10.3969/j.issn.1000-0844. 2021.02.369

近断层地震作用下 RC 框排架结构易损性研究

张淑云1,周 杰1,黄 磊1,王 刚2,马尤苏夫1

(1. 西安科技大学 建筑与土木工程学院,陕西 西安 710054;

2. 陕西省建筑设计研究院有限责任公司,陕西西安 710018)

摘要:为研究近断层地震作用下框排架结构破坏的可能性,以某钢筋混凝土框排架结构为原型建立 有限元非线性分析模型,选取16条近断层地震波及8条远场地震波,采用增量动力分析方法绘制 易损性曲线。结果表明:对于远场地震,8度多遇地震及基本地震时,结构正常使用、基本使用、修 复后使用、生命安全及防止倒塌五个极限状态均未超越,满足"小震不坏,中震可修"的抗震要求; 8度罕遇地震时,仅超越正常使用极限状态的概率为2.08%,满足"大震不倒"的抗震要求。而近断 层地震时,在8度多遇地震时结构前四个极限状态均被超越,基本地震时结构超过修复后使用的极 限状态概率为16.62%,有2.40%的概率达到生命安全的极限状态,罕遇地震时接近倒塌的概率为 15.4%。研究结果可为近断层地区框排架结构地震风险评估提供参考。

Seismic Vulnerability Analysis of RC Frame-Bent Structures Subjected to Near-fault Ground Motions

ZHANG Shuyun¹, ZHOU Jie¹, HUANG Lei¹, WANG Gang², MAYOU Sufu¹

(1. School of Architecture and Civil Engineering, Xian University of Science and Technology, Xian 710054, Shaanxi, China;
 2. Shanxi Architectural Design and Research Institute Co, Ltd, Xian 710018, Shaanxi, China)

Abstract: To study the failure possibility of frame-bent structures under near-fault earthquake, the nonlinear finite element analysis model was established based on a reinforced concrete framebent structure. 16 near-fault and 8 far-field seismic waves were selected, and the incremental dynamic analysis method was used to draw the vulnerability curves. The results showed that for far-field ground motions, five limit states of the structure (normal use, basic use, use after repair, life safety, and collapse prevention) are not beyond under 8-degree frequent and basic earthquakes, thus meeting the seismic requirement of "no damage under minor earthquake, repairable under moderate earthquake"; the probability of exceeding limit state of normal use under 8-degree rare earthquake is 2.08%, thus meeting the seismic requirement of "no collapse

基金项目:国家自然科学基金(51708448)

收稿日期:2019-06-19

第一作者简介:张淑云(1972-),女,博士,教授,研究方向为结构工程。E-mail:xazhshy@126.com。

under major earthquake". For near-fault ground motions, the first four limit states are exceeded under 8-degree frequent earthquake; under 8-degree basic earthquake, the probability of exceeding the limit state of use after repair is 16.62%, and the probability of reaching the limit state of life safety is 2.40%; the probability of approaching collapse under 8-degree rare earthquake is 15.4%. The research results can provide reference for seismic risk assessment of frame-bent structures in near-fault area. **Keywords:** near-fault ground motion; RC frame-bent structure; pulse effect; incremental dynamic

analysis; disaster prediction

0 引言

一般将距离断层破裂面小于 20 km 的区域看 作近断层区域^[1],大于该范围的地震动统称为远场 地震动。对已获得的记录研究发现,断层附近的地 震动均伴随有较大的速度和位移脉冲,这种脉冲效 应会使结构在开始时就承受高能量冲击作用,引起 较大的内力和变形,与远场地震区相比,破坏力更加 惊人。在我国 672 个城市中有很多城市都发生过近 断层地震,从古至今,大约有 40%的城市发生过 4 级以上的近断层地震^[2]。

近断层地震动对结构的影响是近 20 年地震工 程中非常活跃的研究领域^[3]。叶昆等^[4]进行了含有 速度脉冲效应的近断层地震作用下 RC 结构的动力 响应,结果表明:对于近断层地震的脉冲效应现行的 抗震设计规范考虑不充分,结构的层间位移角并不 能满足 1/50 的限制条件,并提出设计建议。易伟建 等^[5]进行了近场地震下框架剪力墙高层结构地震易 损性分析,结果表明:近断层地震作用将会引起结构 的损伤并且大于远场地震作用。

由于框排架结构是工业厂房的主要结构形式之一,且其整体结构布置较复杂、不规则,抗震性能较差^[6],在近断层地震下发生严重破坏或倒塌,将引起巨大的经济损失和人员伤亡。本文基于增量动力分析方法(IDA)对框排架结构进行易损性分析,得到结构在近断层地震作用下发生破坏的失效概率,并与远场地震对比,为近断层地区框排架结构震害预测提供参考。

1 地震动记录的选取与调整

多脉冲小波分析方法(简称 MPA 方法)就是利 用连续小波变换以确定水平双向地震动能量的最强 方向,并且可定量确定最强方向上的脉冲指数、脉冲 周期和显著小波个数等重要参数^[7]。MPA 方法分 析结果表明,当脉冲指数在 0.85 以上时即可判断为 此地震动属于脉冲型地震动^[8]。利用 MPA 方法判 断地震动是否包含速度脉冲更为精确。 本文利用多脉冲小波分析方法从美国太平洋地 震工程研究中心数据库选取 Chi-Chi 地震近断层地 震记录,根据断层距不大于 20 km 的标准分别选取 了 8 条脉冲型及非脉冲型近断层地震波,另外选取 8 条断层距大于 80 km 的远场地震波,所选取的 24 条地震记录如表 1 所列。

由于输入的地震记录均为实际的强震记录,根据场地的峰值加速度与地震动峰值加速度值相对应的原则,按规范对罕遇地震所采用的地震动记录的 PGA进行统一调幅,调整到 0.4g。

2 有限元模型建立

选取某实建的钢筋混凝土框排架结构作为典型 结构。该厂房所处地区抗震设防烈度为 8 度,场地 类别为 II 类,设计基本地震加速度为 0.2g,设计分 组为一组,安全等级为二级。结构高度为 17 m,长 度 66 m,宽 32.1 m。

该建筑 A-B 轴为框架部分,B-C 轴为排架部 分,其中框架部分作为办公使用,地上三层,底部层 高 4.8 m,上面两层为 3.6 m,屋面为不上人屋面;排 架部分跨度为 24 m,柱标高 17 m,12 m 处有一起吊 重量为 20 t 的吊车,屋面为网架结构,且屋架与排架 的连接当作理想铰接。结构平面布置图、立面图分别 见图 1、图 2 所示,梁、柱截面尺寸详见文献[9]。

梁、柱和楼板整体现浇,混凝土等级为C40,楼 板板厚均为100 mm。楼面活载为3.5 kN/m²,屋面 活载 0.5 kN/m²。基本风压为 0.35 kN/m²,基本雪 压 0.25 kN/m²。

利用结构分析软件 SAP2000 建立模型,其中 梁、柱及支撑采用梁、柱单元,考虑单元的剪切变形 和轴向变形;框架楼板采用薄壳单元来模拟,建立的 三维分析模型如图3所示。构件的非线性采用在单 元两端添加塑性铰来模拟,梁两端添加弯矩铰,柱两 端添加 PMM 铰,支撑构件中间及两端指定轴力铰, 根据截面配筋量计算塑性铰特征值。
 Table 1
 Basic information of ground motion records for analysis in this study

表 1

		8		5	•	
序号	地震动台站	断层距/km	PGA/g	$PGV/(m \cdot s^{-1})$	PGV/PGA	地震动类型
1	TCU054	5.3	0.134	43.4	0.33	脉冲型近断层
2	TCU068	0.3	0.340	197.3	0.71	脉冲型近断层
3	TCU052	0.7	0.358	119.9	0.34	脉冲型近断层
4	TCU128	13.2	0.133	51.0	0.37	脉冲型近断层
5	CHY024	9.62	0.28	51.1	0.19	脉冲型近断层
6	TCU101	2.11	0.21	76.77	0.38	脉冲型近断层
7	CHY006	14.5	0.359	102.3	0.29	脉冲型近断层
8	CHY101	13.3	0.34	64.97	0.2	脉冲型近断层
9	TCU074	13.46	0.596	70.4	0.12	非脉冲型近断层
10	TCU071	5.8	0.496	52.3	0.11	非脉冲型近断层
11	TCU072	7.1	0.477	41.6	0.09	非脉冲型近断层
12	TCU078	8.2	0.416	29.6	0.07	非脉冲型近断层
13	TCU057	11.83	0.31	38.21	0.12	非脉冲型近断层
14	TCU079	10.97	0.52	70.5	0.08	非脉冲型近断层
15	CHY010	19.93	0.17	24.21	0.14	非脉冲型近断层
16	CHY029	10.96	0.29	35.2	0.12	非脉冲型近断层
17	Phelan-Wilson Ranch 090	85.9	0.057	4.5	0.08	远场
18	Phelan-Wilson Ranch 180	86.9	0.069	5.7	0.08	远场
19	San Jacinto-CDF Fire Sta 000	147.6	0.085	8.8	0.11	远场
20	San Jacinto-CDF Fire Sta 090	147.6	0.069	7.0	0.10	远场
21	Newport Bch-Newp & Coast 090	84.54	0.103	5.8	0.06	远场
22	Bch-Newp & Coast 180	84.54	0.085	6.3	0.08	远场
23	Wrightwood-Nielson Ranch 090	81.69	0.042	2.9	0.07	远场
24	Wrightwood-Nielson Ranch 180	81.69	0.041	3.2	0.08	远场

3 地震动参数及结构性能指标

3.1 地震动参数的选取

根据已有研究,对于框排架结构,虽然使用结构

第一周期对应的谱加速度 S_a(T₁,5%)时增量动力 曲线的发散程度较低,但是否适合于不规则的,受高 阶振型影响的结构还未有定论,建议采用 PGA^[10]。 本文选择 PGA 作为地震动强度参数(IM)。

Fig.2 The elevation drawing of @-O axis

3.2 结构性能指标确定

大量的研究表明,最大层间位移角 θ_{max}能够准确 反映各层构件变形的综合影响。本文选用θ_{max}作为

Fig.3 Three-dimensional analysis and calculation model

结构性能参数(DM)。

结合已有研究资料^[11],本文取框排架结构性能 水准为五档 LS₁~LS₅,对应的限值列于表 2。

表 2 钢筋混凝土框排架结构的性能水准及量化指标

|--|

州能水亚	抗震性能水准						
圧肥水干	正常使用(LS1)	直接使用 (LS_2)	修复后使用(LS ₃)	生命安全(LS_4)	防止倒塌(LS ₅)		
$\theta_{ m max}$	1/550	1/300	1/150	1/80	1/50		

4 框排架结构的易损性分析

4.1 增量动力分析

对结构双向输入地震波[12]进行增量动力分析

(IDA), 所采用的地震波加速度峰值调整为 0.1g, 0.2g, 0.3g, ..., 2.0g, ...。模型中采用的阻尼为 Rayleigh 经典阻尼, 取值为 0.05, 经过 1 000 余次弹塑性动力时 程分析, 得到该结构的 IDA 曲线簇见图 4 所示。

图 4 24 条地震波作用下结构的 IDA 曲线簇

Fig.4 IDA curve cluster of structure under the action of 24 seismic waves

从图 4 中可以看出 1[#]~8[#] 曲线为脉冲型近断层 地震动作用下 θ_{max} -PGA 关系曲线,该系列曲线表现 出明显的"软化",随着 PGA 的增长较快屈服;9[#]~ 16[#] 曲线为非脉冲型近断层地震动作用下 θ_{max} -PGA 关系,该系列曲线较集中,"软化"现象不明显;17[#]~ 24[#] 曲线为远场地震动作用下 θ_{max} -PGA 关系,该系 列曲线相对集中,大多没有表现出明显的屈服现象。

4.2 易损性曲线的形成

结构的地震易损性是指在给定地震动参数 IM强度水平下,结构性能需求 DM 达到或超越每个性 能水准所对应的量化指标 LS_i 的条件概率^[13],即 $P(LS_i | IM = x)$,将 LS_i 作用于结构的性能指标 DM 进行量化后的指标限值表示为 dm_i ,即

 $P(LS_i \mid IM = x) = P(DM \ge dm_i \mid IM = x)$ (1)

假定性能水准所对应的条件概率服从对数正态 分布,则易损性可表示为:

 $P(DM \ge dm_i \mid IM = x) =$ $1 - P(DM \le dm_i \mid IM = x) =$

$$1 - \Phi\left(\frac{\ln dm_i - \mu_{\ln DM \mid IM = x}}{\beta_{\ln DM \mid IM = x}}\right)$$
(2)

式中:DM的对数均值为 $\mu_{\ln DM \mid IM=x}$;标准差为 $\beta_{\ln DM \mid IM=x}$ 。

4.2.1 近断层地震与远场地震对比分析

利用式(2)可求出近断层地震与远场地震作用 下五档性能水准下所对应的失效概率,以地震动强 度 PGA 为X 轴、超越概率 P 为Y 轴,拟合得到远 场地震及近断层地震作用下框排架结构的易损性曲 线如图 5 所示。

从图 5 可以看出,远场地震作用下得到的易损 性曲线,8 度多遇地震即 PGA = 0.07g 及基本地震 PGA = 0.2g 时,结构五个极限状态的超越概率均为 0,满足"小震不坏,中震可修"的抗震要求;当发生 8 度罕遇地震即 PGA = 0.4g 时,所设计的结构仅超 越正常使用极限状态的概率为 2.08%,满足"大震不 倒"的抗震要求。

而近断层地震作用下 8 度多遇地震时,结构前 四个极限状态均超越;8 度基本地震时,所设计的结 构超过基本修复后使用的极限状态概率为16.62%, 有 2.40%的概率达到生命安全的极限状态,此种情 况下已经危害生命;8 度罕遇地震时,结构处于修复 后使用和生命安全状态概率较高,接近倒塌的概率 为15.4%,超越极限状态较远场地震大,并不能很好 地满足抗震设防原则。 4.2.2 脉冲型与非脉冲型近断层地震对比分析

脉冲效应是近断层地震的显著效应之一,图 6 分别绘制脉冲型及非脉冲型近断层地震作用下结构 的易损性曲线,并对其进行对比分析。

由图 6 可得,脉冲效应对框排架结构的失效概 率影响较大,8 度多遇地震及基本地震时不太明显, 但在 8 度罕遇地震时,脉冲型近断层地震作用下结 构修复后使用的概率为非脉冲近断层地震的 2.2 倍,达到生命安全极限状态的概率为非脉冲近断层 地震的 11.32 倍,脉冲型近断层地震作用下防止倒 塌的概率为 40.02%,而非脉冲型近断层地震作用下 结构防止倒塌的概率为零。因此,近断层地震的脉 冲效应对框排架结构易损性的影响是不可忽略的。

5 结论

(1) 与远场地震相比,近断层地震作用下结构

Fig.6 Fragility curves of structure under pulse-like and non-pulse-like near-fault earthquakes

破坏严重,生命安全及防止倒塌的失效概率较大;近断层地震的脉冲效应对框排架结构的易损性影响较大,研究时应重视脉冲效应。

(2)本文框排架结构易损性分析结果表明一般 远场地震作用下框排架结构能保持较好的抗震性 能,满足规范规定的抗震要求;而"小震不坏,中震可 修,大震不倒"的三设防水准在近断层地震作用下并 不能得到很好的保证。

(3)通过分析结构的易损性曲线,可以快速正确地评估在不同强度地震波作用下结构发生不同程度破坏的概率,为近断层地区钢筋混凝土框排架结构的安全评估提供参考。

参考文献(References)

[1] 李爽,谢礼立.近场问题的研究现状与发展方向[J].地震学报, 2007,29(1):102-111.

LI Shuang, XIE Lili. Progress and Trend on near-Field Problems in Civil Engineering[J]. Acta Seismologica Sinica, 2007, 29 (1):102-111.

- [2] STEWART J P, CHIOU S J, BRAY J D, et al. Ground Motion Evaluation Procedures for Performance-based Design [J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9):765-772.
- [3] 马会杰.近场地震下钢筋混凝土框架抗震性能分析[D].长沙: 湖南大学,2009.
- [4] 叶昆,任毅,赵仕栋,等.钢筋混凝土框架结构在近断层脉冲型
 地震动作用下的动力响应[J].土木工程与管理学报,2011,28
 (3);385-390.

YE Kun, REN Yi, ZHAO Shidong, et al. Seismic Response of RC Framed Structures Subjected to Near-Fault Pulse-Like Ground Motions[J].Journal of Huazhong University of Science and Technology • Urban Science, 2011, 28(3): 385-390.

[5] 易伟建,孙雯.近场地震下框架剪力墙高层结构地震易损性分析[J].建筑科学与工程学报,2015(5):17-24.

YI Weijian, SUN Wen. Seismic Fragility Analysis of Frame-Wall High-Rise Structures under Near-Fault Ground Motions[J].Journal of Architecture and Civil Engineering, 2015(5):17-24.

- [6] 宋远齐,汪小刚,温彦锋,等.大型火电厂主厂房框排架结构弹 塑性时程反应分析[J].工业建筑,2010,40(1):51-54. SONG Yuanqi,WANG Xiaogang,WEN Yanfeng, et al.Elastoplastic time-History Analysis of frame-Bent Structure for Main Mill Building of large-Scale Thermal Power Plant[J].Industrial Construction,2010,40(1):51-54.
- [7] YAO T, CHUNG H, FU C. SeismicEffect on Highway Bridges in Chi-Chi Earthquake[J].J Perform Constr Facil, 2004(18):47-53.
- [8] SHIN T, KUO K, LEE W, et al. A preliminary Report on the 1999 Chi-Chi (Taiwan) Earthquake[J].Seismological Research Letters, 2000(1):23-29.
- [9] 王刚.框排架结构弹塑性地震响应分析[D].西安:西安科技大学,2018.
- [10] 牛帅,朱佳宁.基于 IDA 方法的框排架结构抗震性能分析[J]. 西安建筑科技大学学报(自然科学版),2012,44(6):799-804.
 NIU Shuai,ZHU Jianing.Seismic Performance Analysis Based on Incremental Dynamic Analysis for Frame-Bent Structure
 [J].Journal of Xi'an University of Architecture & Technology,2012,44(6):799-804.
- [11] 尹龙星.火电厂主厂房框排架结构多维地震反应分析与性能 设计方法研究[D].西安:西安建筑科技大学,2013.
- [12] 戴靠山,李伯维,王健泽,等.大型钢支撑框排架结构火电厂的 弹塑性分析[J].土木工程学报,2016,49(增刊 2):114-119.
 DAI Kaoshan, LI Bowei, WANG Jianze, et al. Elasto-Plastic Analysis of a Large Braced Frame Steel Power Plant Structure[J]. China Civil Engineering Journal, 2016, 49 (Supp2): 114-119.
- [13] 刘洋,吕大刚,于晓辉.近场地震作用下型钢-混凝土组合结构桥 易损性分析[J].土木工程学报,2016,49(增刊1):56-60,77.
 LIU Yang,LUDagang,YU Xiaohui.Seismic Fragility Analysis of Steel-Concrete Composite Bridges Excited by Near-Fault Ground Motions[J].China Civil Engineering Journal,2016,49 (Supp1):56-60,77.