余培杰,翟燕.基于典型工程实例对剪力墙抗震性能动力时程分析的提高研究[J].地震工程学报,2019,41(6):1514-1520.doi: 10.3969/j.issn.1000-0844.2019.06.1514

YU Peijie,ZHAI Yan,Dynamic Time-history Analysis of Seismic Performance of Shear Walls Based on a Typical Case[J].China Earthquake Engineering Journal,2019,41(6):1514-1520.doi:10.3969/j.issn.1000-0844.2019.06.1514

基于典型工程实例对剪力墙抗震性能 动力时程分析的提高研究

余培杰1,翟 燕2

(1. 郑州财经学院 土木工程学院, 河南 郑州 450000;

2. 华北水利水电大学 测绘与地理信息学院,河南 郑州 450000)

摘要:为提升剪力墙抗震性能分析精度,以某高层建筑工程楼体剪力墙为背景,将静力弹塑性分析 方法与能量等效准则相结合,确定房屋剪力墙结构沿 2 个主轴方向的三线性恢复力参数,通过参数 构建房屋剪力墙相近层模型。使用三维有限元模型模拟房屋剪力墙工程楼体,并采用相近层模型 模拟该楼体三维有限元模型抗震性能的动力时程。结果表明,随着地震水平和楼层的增加,房屋剪 力墙层间侧移角包络值和顶点侧移角包络值都在明显增加。设置黏滞流体阻尼器可改善房屋剪力 墙受两种地震波的作用,在[X 度罕见地震作用下,房屋剪力墙结构的 X 向减震效果比 Y 向好,房屋 剪力墙 X 向和 Y 向层间位移角的最大减震率分别约为 38%与 18%。

Dynamic Time-history Analysis of Seismic Performance of Shear Walls Based on a Typical Case

YU Peijie¹, ZHAI Yan²

 (1.Department of Civil Engineering, Zhengzhou Institute of Finance and Economics, Zhengzhou 450000, Henan, China;
 2. College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450000, Henan, China)

Abstract: To improve the accuracy of analyses of the seismic performances of shear walls, in this study, we took the shear wall in a high-rise building as the engineering background. We then combined the static elastoplastic analysis method with the energy-equivalent criterion to determine the trilinear restoring force parameters of the shear wall structure along the direction of the two principal axes. Based on the parameters, we established a close layer model of the shear wall.

收稿日期:2019-01-10

基金项目:国家自然科学基金项目(50809028)

第一作者简介:余培杰(1982-),女,河南许昌人,硕士,讲师,研究方向:基坑检测,结构分析。E-mail:1258016812@qq.com。

Then, we simulated the shear wall of the building using a three-dimensional finite element model, and simulated the its dynamic time histories. The results show that with increases in the earthquake magnitude and the number of building floors, the enveloping value of the story and vertex drift angles of the shear wall obviously increase. The correct setting of the viscous fluid damper can improve the seismic response of the building shear wall. Under rare magnitude-9.0 earthquakes, the damping effect on the shear wall structure in the X direction is better than that in the Y direction. The maximum damping of the story drift ratio of a shear wall structure in the X direction is about 38%, and that in the Y direction is about 18%.

Keywords: shear wall; seismic performance; dynamic time history; analysis model; trilinear restoring force; close layer model

0 引言

我国是地震发生较多的国家之一,随着社会经济高速发展,特别是5·12汶川地震后震区的重建损耗了大量的财力、物力,抗震成为目前社会热议话题之一,房屋的减震结构受到社会各层的关注,同时也推动着减震技术的快速前进^[1]。房屋开发商也逐渐把消能减震装置的安装作为房屋销售的亮点,提高房屋结构的安全性能。高校、科研机构和设计单位等也在积极开展抗震防灾技术创新和科技成果转化工作。

剪力墙是用钢筋混凝土墙板来代替框架结构中 的梁柱,能承担各类荷载引起的内力,并能有效控制 结构的水平力。通过钢筋混凝土墙板承受竖向和水 平力的结构称为剪力墙结构^[2]。剪力墙结构具有整 体性好,侧向刚度大,水平力作用下侧移小的特点, 因为这一特点,在剪力墙减震设计中需要选择适合 的阻尼器,以防止阻尼器的增加提高结构刚度。黏 滞流体阻尼器是一种性能很高的消能减震装置,可 将黏滞流体阻尼器看成是一种无刚度的阻尼器,将 其安装在房屋剪力墙结构中,结构刚度不会产生变 化,因此阻尼器可作为一种有效的减震技术应用于 房屋剪力墙结构中。

动力时程分析法是结构抗震弹塑性分析中较可 靠的方法,其原理是将地震加速度记录输入到研究 结构基本运动方程并进行积分,得到结构在整个地 震过程中的位移、速度和加速度的反应。近年来,越 来越多的超限、复杂、特殊及重要的房屋建筑均采用 该方法进行地震反应计算。国内相关学者也进行了 大量的研究,文献[3]中分析了屈曲约束钢板联肢剪 力墙结构的弹塑性,但并未考虑剪力墙结构不同层 间的相似性,降低动力时程分析效果;文献[4]采用 有限元分析方法研究钢框架一屈曲约束钢板剪力墙 体系抗震性,同样未对剪力墙结构间的形似性进行 全面分析,结果存在一定的偏差。因此本文设计了 房屋剪力墙抗震性能动力时程分析模型,并用本文 模型对地震作用下的楼体结构抗震性能进行模拟, 不仅从不同地震水平及不同地震波的角度分析剪力 墙抗震性能的动力时程,还分析了剪力墙结构中不 同楼层的剪力墙抗震性能动力时程。

1 工程概况

本文以某高层建筑工程为例,该工程建筑物横 向为3 跨,纵向为5 跨,剪力墙跨的跨度为5.32 m, 非剪力墙跨的跨度为 7.39 m, 层高均为 3.4 m。该 建筑物位置在II度抗震设防区域内,设置地震基本 加速度为 0.2g, 且地震分组为第一组, 场地类别为 Ⅱ类。使用压型钢板组合楼板作为楼面和屋面材 料^[5-6], 压型钢板要选用 YX-75-200-600-1.2 型号材 料,且该压型钢板厚度要大于 1.3 mm,楼板厚为 155 mm。根据折算荷载计算可得楼面恒载在含板 重的情况下为 5.5 kN/m²,包含附加 1.5 kN/m² 的 轻质隔墙荷载,活载取值为 3.5 kN/m²;屋面恒载在 含板 重 的 情 况 下 为 7.5 kN/m^2 ,活 载 取 值 为 1 kN/m²,以 10.5 kN/m² 作为标准屋外墙均布荷 载;2.5 kN/m² 作为屋面女儿墙均布荷载。顺着该 工程结构的两个主轴方向,在5~20 层间合理位置 分别设置阻尼器。

2 相近层模型的建立

要对剪力墙结构进行弹塑性时程分析,首先要 确定剪力墙结构的恢复力模型参数。本文工程中将 静力弹塑性分析方法与能量等效准则相结合,确定 剪力墙结构为沿 2 个主轴方向的三线性恢复力模型,由于黏滞流体阻尼支撑无法提供附加刚度,因此 剪力墙结构各层在减震前后具有相同的恢复力模型^[7],以下为相近层模型建立的步骤:

图 1 建筑工程示意图 Fig.1 Schematic diagram of building project

(1)顺着剪力墙结构高度方向,对各个楼层的 质量中心点增加水平荷载:

(2)缓慢加强水平荷载,促进剪力墙结构各层 塑性的显现;

(3)分析获取剪力墙结构各层的层间剪力及层间位移,得到层间恢复力-位移曲线;

剪力墙结构各层的层间变形通常表现为结构的 弯曲变形分量和剪切变形分量^[8],剪切变形分量是 可促进减震构件发挥作用的变形分量,所以可通过 层间变形与弯曲变形分量的差值获取剪切变形分 量,并以层间恢复力-剪切位移曲线作为确定三线型 恢复力模型的依据。

(4) 获取三线型恢复力模型的参数^[9]:该参数 包括第1折点、第2折点以及三线型刚度*K*₁、*K*₂和 *K*₃。*K*₁表示弹性刚度,取第1折点与原点连线的 斜率;*K*₂表示第1折点与第2折点连线的斜率;*K*₃ 表示层间剪力-层间位移曲线上最后一点与第1折 点连线的斜率。

需要注意的是,各楼层出现初始屈服状态的时间并不相同,当楼层剪力墙结构较为薄弱时^[10],会较早出现屈服状态。依据剪力墙结构屈服状态出现的先后顺序判定整体剪力墙结构的失效机制,为以后的合理设置减震装置控制结构的破坏提供依据。

当楼层出现屈服状态的时间较早时,需要对该楼层 加强减震措施,若楼层并没有出现屈服状态,则表明 楼层弹性状态良好^[11]。当对该楼层进行动力时程 分析时,可将该楼层的刚度设置为常数,该常数就是 该楼层的初始刚度,且该楼层减震设计过程中无需 增加阻尼器。

假设楼层全部构件均处于弹性状态下,将 F 轴 上 j 点对应 X 轴, $F_j - X_j$ 的斜率看成是初始刚度, 第 1 折点($f_{1,j}, x_{1,j}$)与各楼层构件出现初始屈服状 态相一致。通过弹塑性分析获取力-位移骨架曲线, 该曲线与坐标轴所围成的面积,等于三线型恢复力 骨架曲线与坐标轴所围成的面积,以此为原则确定 第 2 折线的刚度和第 2 折点($f_{2,j}, x_{2,j}$)。经过弹塑 性分析获取力-位移骨架曲线在点($f_{\max,j}, x_{\max,j}$)处 的倾斜率,该倾斜率便是第 3 折线的刚度,可将点 ($f_{\max,j}, x_{\max,j}$)看成是极限承载能力点,也就是在这 个点以后即使不再增加外力^[12],位移也仍然会增 加。

由此,可将整体过程看成是已知($f_{1,j}, x_{1,j}$)和 ($f_{\max,i}, x_{\max,j}$),求未知点($f_{2,j}, x_{2,j}$)。 $f_{1,j}, f_{2,j}$, $f_{\max,i}$ 三者间的关系可用下式表示:

$$f_{2,j} = k_{2,j} (x_{2,j} - x_{1,j}) + f_{1,j}$$
(1)

$$f_{2,j} = f_{\max,j} - k_{3,j} (x_{\max,j} - x_{2,j})$$
(2)

满足:

$$k_{2,j}(x_{2,j} - x_{1,j}) + f_{1,j} = f_{\max,j} - k_{3,j}(x_{\max,j} - x_{2,j})$$
(3)

由式(3)可得到:

$$k_{2,j} = \frac{f_{\max,j} - f_{1,j} - k_{3,j} (x_{\max,j} - x_{2,j})}{x_{2,j} - x_{1,j}}$$
(4)

根据面积相等原则可以得到:

$$f_{1,j} \frac{x_{1,j}}{2} + (f_{1,j} + f_{2,j}) \frac{x_{2,j} - x_{1,j}}{2} + (f_{2,j} + f_{\max,j}) \frac{x_{\max,j} - x_{2,j}}{2} = \int_{0}^{x_{\max,j}} F_{j} dX_{j}$$
(5)

式中:d 表示距离。

将式(1)和式(2)分别代入式(5)可得:

$$f_{1,j}x_{1,j} + \lfloor f_{1,j} + f_{\max,j} - k_{3,j}(x_{\max,j} - x_{2,j}) \rfloor \bullet$$

$$(x_{2,j} - x_{1,j}) + \lfloor 2f_{\max,j} - k_{3,j}(x_{\max,j} - x_{2,j}) \rfloor \bullet (x_{\max,j} - x_{1,j}) = 2 \int_{0}^{x_{\max,j}} F_{j} dX_{j}$$

将式(4)带入式(6)中可以得到:

(6)

$$f_{1,j}x_{1,j} + [f_{1,j} + f_{\max,j} - k_{3,j}(x_{\max,j} - x_{2,j})] \cdot (x_{2,j} - x_{1,j}) + [2f_{\max,j} - k_{3,j}(x_{\max,j} - x_{2,j})](x_{\max,j} - x_{1,j}) = 2 \int_{0}^{x_{\max,j}} F_{j} dX_{j}$$
(7)

对式(7) 分离变量并化简,可得到: $x_{2,j} = \left[2 \int_{0}^{x_{\max,j}} F_j dX_j + f_{\max,j} (x_{1,j} - 2x_{\max,j}) + k_{3,j} x_{\max,j} (x_{\max,j} - x_{1,j})\right]/$ $\left[(f_{1,j} - f_{\max,j}) + k_{3,j} (x_{\max,j} - x_{1,j})\right]$ (8) 通过上述公式可以看出 $x_{2,j}$ 和 $(f_{1,j}, x_{1,j})$, $(f_{\max,j}, x_{\max,j})$ 的关系,以 $(f_{1,j}, x_{1,j})$ 和 $(f_{\max,j}, x_{\max,j})$ 两个点的坐标为依据,并结合面积相等的条

件,可确定 $x_{2,j}$ 的值,也确定了点($f_{2,j}$, $x_{1,j}$),获取 到折点 $k_{2,j}$ 的值。由此结构的三线性恢复力模型可 以完全确定下来^[13-15]。

使用三维有限元模型静力推覆本文剪力墙结构,图 2 为结构分析模型。

15

时间/s

(a) 天津波

三维模型中,梁、柱构件采用弹塑性梁单元,u₁, u_j,…,u_n分别对应模型单元,以纤维束模型作为单 元的切线刚度,且该单元线刚度为纤维束模型。剪 力墙构件通常使用弹塑性墙单元^[16-18],平面内刚度 通常使用平面应力膜模型,平面外刚度可使用简化 的弹塑性板单元。为了考虑将纤维束模型和平面应 力膜模型进入塑性后的性能的变化,可通过定义暗 柱或者端柱对剪力墙边缘构件进行模拟。

梁、柱、剪力墙作为剪力墙结构中各最主要的构 建,其材料使用 C30 混凝土,设定 19.9 N/mm² 作为 其轴心的抗压强度标准值,设置 1.12 作为约束混凝 土强度提高的系数,在考虑 SAENZ 曲线下降段基 础上,使用 SAENZ 曲线对混凝土材料的受压本构 关系进行模拟,该模拟过程中,不考虑混凝土的抗拉 能力^[19-21]。关于钢筋材料部分,使用 HRB335 型号 的钢筋,设定 340 N/mm² 作为屈服强度标准值,使 用理想弹塑性模型对钢筋的本构关系进行模拟。

3 时程模拟分析

本文构建房屋剪力墙的相近层模型,使用该模型模拟文中工程剪力墙建筑的抗震性能动力时程, 对原剪力墙结构设置黏滞流体阻尼器后,选用天津 波和北京波两种地震波,按照标准条件依据房屋剪 力墙建筑场地属性,设计地震分组通过 EL CEN-TRO 地震记录以及北京饭店观测点地震记录信息, 北京波按照 II 类场地模拟地震波,天津波和北京波 峰值依据标准条件调整到IX 度罕遇地震(500 gal)。 图 3 为单位化的地震加速度波图。

采用 SAP2000 计算获取剪力墙结构的基本 周期分别为:5层为1.69 s、12 层为 2.87 s、18层为

30

Fig.3 Acceleration time histories of ground motions

2019 年 20

3.21 s,时程分析时适当调整小震、中震、大震的加速度峰值,统计不同地震强度下的加速度峰值及水平地震影响系数最大值(表 1)。表 2 为不同地震强度下 3 个楼层时程分析结果。

Table 1	Seismic parameters		
此重理座	小雪	山伊	

表 1

地震强度	小震	中震	大震
水平地震影响系数 α_{max}/g	0.15	0.461	0.83
加速度峰值/(cm•s ⁻²)	69	189	397

	Table 2	Time-history analysis results of three stories					
结构米刑	地震波 -	层间侧移角包络值/%		顶点侧移角包络值/mm			
有构关型		小震	中震	大震	小震	中震	大震
5 层 3 跨	天津波	0.19	0.51	1.26	55.20	145.82	286.13
	北京波	0.21	0.57	1.32	57.33	151.62	318.12
12 层 3 跨	天津波	0.26	0.62	1.03	111.47	263.06	530.45
	北京波	0.24	0.61	1.13	113.82	298.11	543.96
18 层 3 跨	天津波	0.27	0.70	1.13	171.06	409.17	754.31
	北京波	0.19	0.64	0.85	130.43	367.51	653.13

表 2 3个楼层时程分析结果

由表2可知,当处于不同楼层时,天津波和北京 波地震作用下,随着两种波强度的增加,房屋剪力墙 层间侧移角包络值和顶点侧移角包络值都在明显增 加;随着房屋剪力墙层数不断递增,以及天津波和北 京波作用下地震强度不断增加,层间侧移角包络值 和顶点侧移角包络值也都在明显增加。

计算原剪力墙结构和经过黏滞流体阻尼器后的 减震结构,在II度罕遇地震下天津波以及北京波影 响下的各楼层 X 向和 Y 向最大层间位移角,用图 4 和图 5 描述。

图 4 IX 度罕遇地震下 X 向最大层间位移角

Fig.4 Maximum story drift ratio in the X direction under rare magnitude-9 earthquakes

Fig.5 Maximum story drift ratio in the Y direction under rare magnitude-9 earthquakes

由图 4、图 5 可知,减震后的房屋剪力墙结构因 为设置了黏滞流体阻尼器,相比减震前未设置黏滞 流体阻尼器的房屋剪力墙结构 X 向、Y 向最大层间 位移角都降低到规范值以内,说明黏滞流体阻尼器 的设置改善了房屋剪力墙在地震作用下的反应。

Ⅲ度罕遇地震作用下,房屋剪力墙结构的 X 向 减震效果比 Y 向减震效果好,X 向层间位移角的最 大减震率约为 38%,Y 向层间位移角的最大减震率 约为 18%;Ⅲ度罕见地震作用下,未减震结构的部 分楼层层间位移角超过规范弹塑性层间位移角 1/120标准要求,因此消能减震技术的使用可促使房 屋剪力墙抗震结构各层均满足规范弹塑性层间位移 角的标准要求;从图 4 和图 5 中可以看出,房屋剪力 墙结构的薄弱层通常都处于 5 层~18 层,说明本文 设计的阻尼器的布置方案是合理的。

4 结论

采用本文设计的房屋剪力墙相近层模型对楼体 三维有限元模型剪力墙结构抗震性能动力时程进行 模拟分析,得出如下几点结论:

(1)不同地震强度下,天津波和北京波随着地 震强度的增加,层间侧移角包络值和顶点侧移角包 络值都在明显增加;随着层数不断递增,以及天津波 和北京波作用下地震强度的增加,层间侧移角包络 值和顶点侧移角包络值也都在明显增加。由此可 知,地震强度、楼层的增加是影响房屋剪力墙抗震性 能的重要因素。

(2) 黏滞流体阻尼器的设置改善了剪力墙在地 震作用下的反应,剪力墙结构的 X 向减震效果比 Y 向减震效果好。消能减震技术的使用可促使房屋剪 力墙抗震结构各层均满足规范弹塑性层间位移角的 标准要求,在提高房屋剪力墙抗震性能方面有重要 作用。

(3) IX 度罕见地震作用下,房屋剪力墙结构 X 向层间位移角的最大减震率约为 38%,Y 向层间位 移角的最大减震率约为 18%,X 向层间位移角的最 大减震率比 Y 向高。在未来的剪力墙抗震性能研 究中,应加大对房屋剪力墙竖向抗震性能的研究。

参考文献(References)

[1] 樊春雷,郝际平,袁昌鲁.钢框架-钢板剪力墙结构抗震性能研究[J].地震工程与工程振动,2015,35(4): 213-221.

FAN Chunlei, HAO Jiping, YUAN Changlu. Seismic Behavior of Steel Frame-steel Plate Shear Wall Structure[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(4): 213-221.

- [2] 杨博雅,吕西林.预应力预制混凝土剪力墙结构直接基于位移的抗震设计方法及应用[J].工程力学,2018,35(2):59-66. YANG Boya, LV Xilin. Direct Displacement-based Aseismic Design and Application for Prestressed Precast Concrete Shearwall Structures[J].Engineering Mechanics,2018,35(2):59-66.
- [3] 王海江,李国强,黄小坤,等.屈曲约束钢板联肢剪力墙结构的 弹塑性分析[J].建筑钢结构进展,2018,20(6):68-78.
 WANG Haijiang,LI Guoqiang,HUANG Xiaokun, et al.Elastic-plastic Analysis of Coupled Shear Walls with Buckling-Restrained Steel Plates[J].Progress in Steel Building Structures, 2018,20(6):68-78.
- [4] 周学军,王振,张慧武,等.装配式梁柱铰接钢框架-屈曲约束钢 板剪力墙体系抗震性能有限元分析[J].钢结构.2016.31(10): 20-24.

ZHOU Xuejun, WANG Zhen, ZHANG Huiwu, et al. Fem Analysis of the Seismic Performance of Fabricated Steel Framebuckling-restrained Steel Plate Shear Wall System with Pinned Beam-column Connections [J]. Steel Construction, 2016, 31 (10):20-24.

- [5] 杨安银,王光进,杨春和,等.坝体动力抗震及尾矿动力特性分析[J].中国安全生产科学技术,2019,15(4):122-127.
 YANG Anyin,WANG Guangjin,YANG Chunhe, et al.Dynamic Seismic Analysis of Dam Body and Analysis of Dynamic Characteristics of Tailings[J].Journal of Safety Science and Technology,2019,15(4): 122-127.
- [6] 刘建新,沈杰,朱美春.异型剪力墙结构低周反复加载试验及抗 震分析[J].工程抗震与加固改造,2015,37(5):1-7. LIU Jianxin, SHEN Jie, ZHU Meichun, Low Reversed Cyclic Loading Test and Seismic Studies of the Skip-floor Staggered Shear Wall Structure[J]. Earthquake Resistant Engineering and Retrofitting,2015,37(5):1-7.
- [7] 黄强兵,高欢,刘妮娜,等.地裂缝场地地铁隧道地震动力响应的振动台试验研究[J].地质力学学报,2018,24(6):785-794.
 HUANG Qiangbing,GAO Huan,LIU Nina,et al.Shaking Table Model Test on Seismic Response Ofmetro Tunnel Crossing Ground Fissure Site[J].Journal of Geomechanics,2018,24(6):785-794.
- [8] 杨扬,何敏娟,李征.木剪力墙布置数量对多层钢木混合结构抗 侧力性能的影响[J].结构工程师,2017,33(2):122-128. YANG Yang,HE Minjuan,LI Zheng.Lateral Performance of Wood Shear Wall's Layout in the Multi-story Wood-steel Hybrid Structures[J].Structural Engineers,2017,33(2):122-128.
- [9] 舒林,谭继可,贾善坡.高层建筑结构抗震性能评估实例[J].建 筑技术,2016,47(4): 371-374.
 SHU Lin, TAN Jike, JIA Shanpo.Seismic Performance Assessment of a High-rise Building Structure[J]. Architecture Technology,2016,47(4): 371-374.

- [10] 李国欣,祖建锁,宫海军,等.抗震性能化设计在某高层抗震加 固中的应用[J].工程抗震与加固改造,2017,39(3):120-124.
 LI Guoxin, ZU Jansuo, GONG Haijun, et al. Application of Seismic Performance Design in a High-rise Building Seismic Strengthening[J].Earthquake Resistant Engineering and Retrofitting,2017,39(3): 120-124,136.
- [11] 朱昱,李启才,纪瑞,利用钢板剪力墙耗能的自复位结构抗震性能研究[J].建筑钢结构进展,2015,17(4):19-26.
 ZHU Yu,LI Qicai,JI Rui.Research on Seismic Performance of Self-Centering Structural System Using Steel Plate Shear Wall[J].Progress in Steel Building Structures,2015,17(4): 19-26.56.
- [12] 张文莹, MAHDAVIAN Mahsa, 虞诚. 波纹钢板覆面冷弯薄壁 型钢龙骨式剪力墙抗震性能研究进展[J]. 建筑钢结构进展, 2017, 19(6): 16-24.

ZHANG Wenying, MAHDAVIAN Mahsa, YU Cheng. Recent Development on Seismic Performance of Cold-Formed Steel Framed Shear Walls with Corrugated Steel Sheathings[J]. Progress in Steel Building Structures, 2017, 19(6): 16-24.

- [13] 陆晖,刘斌,任光勇.对上部剪力墙部分中断的某超限高层的 抗震分析设计[J].建筑结构,2017(增刊 2):125-130.
 LU Hui,LIU Bin,REN Guangyong. Aseismic Analysis and Design of Some Overrun High-rise Building with Partial Interruption of the Upper Shear wall[J].Building Structure, 2017,47(Supp2): 125-130.
- [14] 许伟志,王曙光,刘伟庆,等.某高层剪力墙结构隔震设计及抗 震性能分析[J].建筑结构,2017(增刊 2):325-329.
 XU Weizhi, WANG Shuguang, LIU Weiqing, et al. Isolation Design and Seismic Performance Analysis of a High-rise Shear Wall Structure [J]. Building Structure, 2017, 47 (Supp2): 325-329.
- [15] 蒋峰,李春祥.交错桁架-钢板剪力墙结构体系抗震性能分析
 [J].结构工程师,2018,34(2):54-59.
 JIANG Feng,LI Chunxiang.Seismic Performance Analysis of Staggered Truss-steel Plate Shear Wall[J].Structural Engineers,2018,34(2):54-59.
- [16] 钟登华,刘肖军,佟大威,等.考虑施工质量影响的碾压混凝土 坝地震动力响应[J].河海大学学报(自然科学版),2019,47 (3):312-314.

ZHONG Denghua, LIU Xiaojun, TONG Dawei, et al. Study on

Seismic Responses of RCC Dams Considering Influences of Construction Quality[J].Journal of Hohai University (Natural Sciences),2019,47(3);312-314.

- [17] 赵俊臣, 闫亚杰, 雷宏刚. 煤矸石混凝土预制墙板的板型设计 与试验研究[J].太原理工大学学报, 2016, 47(6): 764-768. ZHAO Junchen, YAN Yajie, LEI Honggang. The Pattern Design and Experimental Study on Prefabricated Wallboard of Coal Gangue[J]. Journal of Taiyuan University of Technology, 2016, 47(6): 764-768.
- [18] 孙敬明,马克俭,陈红鸟,等.高烈度区新型装配整体式空间钢网格盒式筒中筒结构抗震性能研究[J].贵州大学学报(自然科学版),2015,32(4):102-106.
 SUN Jingming, MA Kejian, CHE NHongniao, et al. Study on Seismic Performance of New Assembled Monolithic Space Steel Grid Box Tube-in-Tube Structures in High Earthquake Intensity Area[J]. Journal of Guizhou University (Natural Science),2015,32(4):102-106.
- [19] 宋志,倪化勇,周洪福,等.基于多层次物理力学参数的小区域 地震滑坡危险性评估—以长江上游石棉县城及周边为例
 [J].地质力学学报,2016,22(3):760-770.
 SONG Zhi, NI Huayong, ZHOU Hongfu, et al. Risk Assessment of Seismic Landslide Within Small Region Based on Multi-level Physical and Mechanical Parameters: A Case Study of Shimian and Adjacent Areas in the Upper Reaches of Yangtze River[J].Journal of Geomechanics,2016,22(3):760-770.
- [20] 王飞,张宗亮,王佳俊,等.基于改进 M5'-主成分模型树的高 心墙堆石坝沉降变形预测[J].河海大学学报(自然科学版), 2018,46(4):353-359.

WANG Fei,ZHANG Zongliang, WANG Jiajun, et al. Forecasting of the Settlement Deformation for High Core Rock-fill Dam Based on the Improved M5'-PCR Model Tree[J].Journal of Hohai University (Natural Sciences),2018,46(4):353-359.

[21] 罗海燕,杨双锁,王磊,等.地连墙插入比对深基坑稳定性影响 的数值模拟研究[J].太原理工大学学报,2016,47(4):455-459.

> LUO Haiyan, YANG Shuangsuo, WANG Lei, et al. Numerical Simulation Study on the Influence of the Earth Wall Insertion Ratio on the Stability of Deep Foundation Pit[J]. Journal of Taiyuan University of Technology, 2016, 47(4): 455-459.