王亚楠,杜永峰,胡高兴,等.远场长周期地震下基于规范设计隔震结构的抗震性能研究[J].地震工程学报,2018,40(2):219-224.doi:10.3969/j.issn.1000-0844.2018.02.219

WANG Yanan, DU Yongfeng, HU Gaoxing, et al. Seismic Performance of Base-Isolated Structures Under Far-field Long-period Ground Motion Based on Seismic Codes[J]. China Earthquake Engineering Journal, 2018, 40(2): 219-224. doi: 10.3969/j.issn. 1000-0844.2018.02.219

远场长周期地震下基于规范设计隔震 结构的抗震性能研究₀

王亚楠¹, 杜永峰², 胡高兴¹, 刘 星¹

(1.西安工业大学建筑工程学院,陕西西安710021;2.兰州理工大学防震减灾研究所,甘肃兰州730050)

摘要:隔震结构具有较长自振周期,且容易受地震动长周期特性的影响,因此其在长周期地震动作 用下的抗震性能值得研究。以某基于规范设计的基础隔震结构为例,通过对该结构在规范规定地 震作用和远场长周期地震作用下的地震响应进行分析和对比,研究长周期地震动对结构地震响应 的影响;通过对钢筋和混凝土的损伤状态进行定义和标识,探讨长周期地震作用下基础隔震结构的 损伤分布规律。研究结果表明,长周期地震动作用下隔震结构发生破坏的概率远大于具有相同峰 值地面加速度的普通地震动,其中长周期地震动反应谱的谱峰值"后移"被认为是造成这种情况的 主要原因,且长周期地震动作用下隔震结构的损伤分布并不均匀,其主要集中在结构的底层。

关键词:隔震结构;长周期地震动;抗震性能;远场
 中图分类号:TU311.3
 文献标志码:A
 文章编号:1000-0844(2018)02-0219-06

DOI:10.3969/j.issn.1000-0844.2018.02.219

Seismic Performance of Base-Isolated Structures Under Far-field Long-period Ground Motion Based on Seismic Codes

WANG Yanan¹, DU Yongfeng², HU Gaoxing¹, LIU Xing¹

(1. School of Civil and Architecture Engineering, Xĭan Technological University, Xĭan 710021, Shaanxi, China;
2. Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, Gansu, China)

Abstract: A base-isolated structure is a civil engineering structure with a long natural vibration period and is easily influenced by the long period spectrum characteristics of seismic ground motion. Some research results show that, compared with far-field ordinary seismic ground motion, an isolated structure may experience greater deformation under far-field long-period ground motion, and that this will cause structural damage. Therefore, the seismic performance of isolated structures under long-period ground motion is worth studying. In this paper, nine far-field long-period ground motion records were chosen from the Pacific Earthquake Engineering Research Center (PEER) as seismic input, and a lead-rubber bearing (LRB) base-isolated structure, based on the design code, was taken as the object of study. The seismic response of the structure was analyzed and compared under far-field ordinary and far-field long-

作者简介:王亚楠(1986-),男,博士,讲师,主要从事工程结构工程抗震与减振控制研究。E-mail:pansidong311@163.com。

基金项目:国家自然科学基金(51578274);西安工大校长基金(XAGDXJJ15021)

period ground motion, and the effect of long-period ground motion on isolated structures was studied. The damage distribution law for base-isolated structures under long-period ground motion is discussed by defining the damage status of the concrete and steel in the structure. The research results show that the probability of damage to base-isolated structure under long-period ground motion is far greater than under ordinary ground motion. Furthermore, the damage distribution in isolated structures under long-period ground motion is uneven and is mainly concentrated in the bottom floors of the structure.

Key words: base-isolated structure; long-period ground motion; seismic performance; far-field

0 引言

在墨西哥(1985)、日本(1995,2011)及中国汶川 (2008)等已经发生的强地震中,人们发现远离震源的 高层建筑、大跨度桥梁等长周期结构存在较为明显的 震害,这类现象引起了国内外研究者的广泛关注。总 结近年来的研究成果可知,这些地震中所包含的长周 期地震动分量是造成上述具有较长周期的结构发生 破坏的主要原因。根据地震动特性的不同可以将长 周期地震动分为具有明显大幅值脉冲的近断层长周 期地震动和远场类谐和长周期地震动两类。受限于 地震记录采集仪的发展水平,早期人们并不能获取地 震记录平真实的、高精度的长周期分量,这严重阻碍 了对其特性以及其作用下结构的抗震性能等研究工 作的开展。随着科学技术的不断发展,现有仪器已经 能够捕捉到地震过程中的长周期成分,为相关研究工 作的开展提供了不可或缺的基础条件。

近年来,国内外学者围绕隔震结构在长周期地 震动作用下的地震行为积极开展了研究。Kitamura 等^[1]研究了隔震结构在长周期地震动作用下的 抗震性能,包括结构的累计耗能、隔震层最大位移响 应等;Fukuwa 等^[2]以长周期地震记录为输入,研究 了影响高层结构、隔震结构等长周期结构地震响应 的关键参数;Ariga 等^[3]对高层基础隔震结构在长 周期地震动作用下的地震响应进行了分析; Moussa 等[4]提出了一种适用于隔震结构近断层脉冲型地震 响应分析的反应谱方法;Pant 等^[5]对隔震结构在包 含长周期脉冲地震动作用下的抗震性能进行了研 究;Shi 等^[6]研究了某四层基础隔震医院在长周期 地震动作用下的响应;贺秋梅等[7]研究了近断层速 度脉冲型地震动作用下基础隔震结构的位移反应; 叶昆等[8] 对近断层脉冲型地震动作用下基础隔震结 构的碰撞响应进行了研究;宋廷苏等[9] 对速度脉冲 型地震动作用下隔震结构的减震系数进行了研究; 刘阳等[10] 对单层单向偏心隔震结构在近断层和远 场长周期地震动作用下的损伤性能进行了评价;杜 东升等[11]研究了包含长周期特性在内的地震动频 谱特性对隔震结构响应及损伤的影响;李雪红等^[12] 分析了长周期地震动脉冲特性对减隔震桥梁地震响 应和减震效果的影响;孙颖等^[13]探讨了有明显脉冲 效应的近、远场长周期地震动作用对隔震连续梁桥 地震反应的影响;赵益彬等^[14]对高层隔震结构在长 周期地震动作用下的响应进行了分析;王亚楠等^[15] 对近断层长周期脉冲型地震动作用下,影响隔震结 构地震响应的不同参数进行了研究;Alan等^[16]研 究了基础隔震结构在近断层脉冲型地震动作用下的 性能状态。针对隔震结构在长周期地震动作用下的 地震响应进行研究的文献还有很多,但主要集中在 近断层脉冲型地震动作用下的研究,而针对隔震结 构在远场长周期地震动作用下的地震响应进行研究 的文献尚且不多,有待于进一步深入研究。

综上所述,本文在太平洋地震工程研究中心 (PEER)地震动数据库的基础上,根据地震记录的 功率谱特点,选取远场长周期地震记录作为结构的 地震输入,以某基于规范设计的基础隔震工程为例, 研究其对隔震结构地震响应的影响,并初步探讨其 作用下隔震结构的损伤分布和发展规律。

1 工程设计概况

以某 5 层钢筋混凝土框架基础隔震结构新建工 程为例。结构各层层高均为 3.0 m,抗震设防类别 为丙类,所处地区的抗震设防烈度为 II 度 0.2g,设 计地震分组为第二组,场地类别为 II 类,特征周期值 为 0.45 s。外边梁截面尺寸为 800 mm×300 mm, 其余梁截面尺寸为 300 mm×600 mm,柱截面尺寸 为 500 mm×500 mm,均采用 C30 混凝土,梁、柱纵 向钢筋和箍筋均采用 HRB400;计算分析时,板面恒 荷载为 6.0 kN/m² (含楼板自重),活荷载为 2.0 kN/m²,填充墙自重转化为梁上恒荷载 6 kN/m²。

2 隔震效果分析

图 1(a)所示为结构的平面布置图,图 1(b)所示 为隔震支座的布置方案(其是根据上部结构的初步 计算结果及隔震支座厂家提供的产品规格表,经过 反复试算最终确定)。隔震支座设置在房屋基础与 上部结构之间,将上部结构与基础隔开。每根框架 柱下均设置隔震支座,选用的隔震支座型号及性能 指标如表1所列。

根据我国建筑抗震设计规范中的相关要求,文 中在进行动力时程分析时,根据建筑场地类别和设 计地震分组, 洗取5组实际强震记录和2组人工模 拟加速度时程曲线。图 2(a)给出了这 7 组地震记 录对应的地震影响系数曲线与规范地震影响系数曲 线的对比结果,从图中可以看出,所选地震记录的平 均地震影响系数曲线在结构的主要自振周期段 (0.5~2s)与规范谱高度吻合,谱值相差均在20% 以内,满足规范要求。图2(b)所示为7 组普通强震 记录的功率谱曲线,从图中可以看出这些地震记录 的主要频谱成分集中分布在 0~2 Hz 之间,能够激 起结构主要振型的反应。

表 2 给出了设防地震下隔震结构与非隔震结构 的层间剪力比。从表中可以看出,X向和Y向的最 大水平向减震系数分别为 0.413 和 0.416,说明隔震 后结构的水平地震作用大致比非隔震时的地震作用

Fig.1 Model of the base-isolated structrue

表 1 隔震支座性能参数

Characteristic curves of ordinary seismic ground motion records Fig.2

降低半度,隔震效果较为理想。

更进一步,将上述地震记录加速度时程的峰值 分别调幅至 70 cm/s² 和 400 cm/s²,对隔震结构进 行多遇和罕遇地震作用下的抗震变形验算,分析结 果如图 3 所示。从图 3(a)中可以看出,在多遇地震

下,结构隔震后的最大层间位移角为 0.001 5,小干 小于规范规定的钢筋混凝土框架结构的弹性层间位 移角限值 1/550(0.001 8),满足"小震不坏"的抗震 设防目标。从图 3(b)中可以看出,在罕遇地震作用 下,结构隔震后的最大层间位移角为0.007 3,远小 隔震结构与非隔震结构的层间剪力比

表 2

Tabel 2 Inter-storey shear force ratio between isolated structure and ordinary structure										
剪力比	楼层	人工 1	人工 2	832-000	1430-042	1810-090	6980-10	6980-80	平均值	
X 向	5	0.306	0.678	0.460	0.393	0.391	0.346	0.320	0.413	
	4	0.337	0.621	0.460	0.402	0.391	0.313	0.280	0.401	
	3	0.358	0.555	0.424	0.404	0.381	0.256	0.253	0.376	
	2	0.360	0.477	0.422	0.426	0.340	0.212	0.228	0.352	
	1	0.346	0.427	0.399	0.425	0.319	0.206	0.211	0.333	
	隔震层	0.349	0.457	0.418	0.465	0.352	0.193	0.238	0.353	
Y 向	5	0.306	0.664	0.441	0.390	0.417	0.348	0.345	0.416	
	4	0.350	0.630	0.439	0.400	0.415	0.315	0.299	0.407	
	3	0.369	0.568	0.408	0.393	0.378	0.270	0.267	0.379	
	2	0.347	0.489	0.404	0.404	0.340	0.224	0.237	0.349	
	1	0.323	0.431	0.384	0.415	0.314	0.210	0.216	0.328	
	隔震层	0.331	0.454	0.425	0.453	0.366	0.197	0.244	0.353	

于规范规定的钢筋混凝土框架结构的弹塑性层间位 移角限值 1/50(0.02),满足"大震不倒"的抗震设防 目标,说明该结构设计合理。

3 长周期抗震性能研究

隔震结构作为一类具有较长自振周期的柔性结构,对地震动的长周期特性较为敏感,因此非常有必

要对其在长周期地震动作用下的抗震性能进行研究。文中在太平洋地震工程研究中心(PEER)地震动数据库的基础上,根据地震记录的功率谱特点,选取了9条远场长周期地震记录(表 3)作为结构的地 震输入,并统一调幅至 400 cm/s²,沿 X 轴单向输入,运用 SeimoStruct 进行远场长周期地震动作用 下隔震结构的抗震性能研究。

表 3 远场长周期地震记录 Table 3 Far-field long-period seismic ground motion records

编号	地震记录名称	时间	分量	震级	断层距/km	PGA/g	PGV/PGA
833	Landers	1992	W BA000	7.28	144.90	0.047 47	0.27
834	Landers	1992	ARC172	7.28	137.25	0.029 95	0.33
849	Landers	1992	BAD000	7.28	128.06	0.057 73	0.32
856	Landers	1992	EUC022	7.28	146.89	0.069 00	0.21
865	Landers	1992	116000	7.28	164.36	0.0398 7	0.35
866	Landers	1992	VER180	7.28	157.69	0.040 63	0.32
870	Landers	1992	OBR000	7.28	151.70	0.425 50	0.37
871	Landers	1992	GR2090	7.28	161.56	0.034 05	0.29
878	Landers	1992	DEL000	7.28	157.41	0.059 60	0.34

图 4(a) 所示为表 3 所列远场长周期地震记录 的功率谱曲线。从图中可以看出,这些地震记录的 频谱成分主要集中分布在 0~1 Hz,与普通地震记 录明显不同。图 4(b) 所示为远场长周期地震记录 的加速度反应谱与规范谱的对比。从图中可以看出,两者之间存在明显的区别,长周期地震记录谱峰 值存在明显的"后移"现象,集中分布在 0.5~2 s之间,可能会对隔震结构造成不利影响。

Fig.4 Spectrum characteristics of far-field long-period seismic ground motions

图 5(a) 所示为远场长周期地震下楼层最大层 间位移角分布,从图中可以看出,远场长周期地震下 层间位移角沿楼层的分布很不均匀,特别是底部两 层的层间位移角明显大于上部结构。图 5(b) 所示 为远场普通和远场长周期地震下隔震结构的平均层 间位移角对比,从图中可以看出,远场长周期地震下 结构的层间位移响应明显大于远场普通地震,远场 长周期地震动对隔震结构的破坏力更强,且二者作 用下结构层间位移角的分布规律不同。

通过对钢筋和混凝土两种材料的损伤状态进行 定义和标识,探讨长周期地震作用下基础隔震结构 的损伤分布和发展规律。图 6 所示为远场长周期地

震下隔震结构随时间推移的代表性损伤发展过程。 从图中可以看出,结构构件损伤最先出现在1、2层 梁上,由纵向钢筋受拉屈服导致;然后损伤向结构整

Fig.5

体扩散,导致与受损梁相关联柱的混凝土发生受压 微损;最后由受损柱截面混凝土被压碎而引发结构 的倒塌破坏宣告结束。由此可见,即便是按照抗震

4 结论

针对隔震结构对地震动长周期特性较为敏感的 特点,对基于抗震规范设计的基础隔震结构在长周 期地震动作用下的抗震性能进行了研究,探讨了长 周期地震动作用下隔震结构的损伤发展过程,得出 主要结论如下:

(1)长周期地震动作用下隔震结构的地震响应 显著增大,发生非预期破坏的概率进一步提高;

(2)长周期地震动作用下隔震结构的损伤分布 并不均匀,从本文看底层柱的破坏是导致结构失效 的主要原因;

(3)长周期地震动反应谱的谱峰值存在明显 "后移"现象,这是导致基于规范谱设计的隔震结构 发生非预期破坏的主要原因。

参考文献(References)

- [1] KITAMURA H, TAKENAKA Y, TAMURA K. Seismic Performance of Seismic-isolated Building for Long-period Ground Motion and Limited Performance of Seismic Isolator [J]. ASCE, 2008, 315:1-12.
- [2] FUKUWA N, TOBITA J.Key Parameters Governing the Dynamic Response of Long-period Structures[J].Journal of Seismology, 2008, 12(2):295-306.
- [3] ARIGA T, KANNO Y, TAKWAKI I. Resonant Behaviour of Base-isolated High-rise Buildings under Long-period Ground Motions[J]. Structural Design of Tall & Special Buildings, 2010,15(3):325-338.
- [4] MOUSSA L.Response Spectrum Analysis for Regular Base Isolated Buildings Subjected to Near Fault Ground Motions[J].Structural Engineering & Mechanics, 2012, 43(4):527-543.
- [5] PANT D R.Influence of Near-fault Ground Motions on the Response of Base-isolated Reinforced Concrete Buildings Considering Seismic Pounding[J]. Advances in Structural Engineering, 2013, 16(12): 1973-1988.
- [6] SHI Y,KURATA M,NAKASHIMA M.Disorder and Damage of Base-isolated Medical Facilities When Subjected to Nearfault and Long-period Ground Motions[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(11):1683-1701.
- [7] 贺秋梅,李小军,杨宇.近断层速度脉冲型地震动作用基础隔震 建筑位移反应分析[J].应用基础与工程科学学报,2014,22 (1):1-13.

HE Qiumei, LI Xiaojun, YANG Yu. Displacement Response Analysis of Base-isolated Buildings Subjected to Near-fault Ground Motions with Velocity Pulse[J].Journal of Basic Science and Engineering,2014,22(1):1-13. [8] 叶昆,陈耀晖,胡轩,等.近断层脉冲型地震动下基础隔震结构 的碰撞响应[J].地震工程与工程振动,2014(増刊1):836-840. YE Kun,CHEN Yaohui,HU Xuan,et al.Seismic Response of Base-isolated Structures under Near-fault Pulse-like Ground Motions Considering Potential Pounding[J].Earthquake Engineering and Engineering Dynamics,2014(Supp1):836-840.

[9] 宋廷苏,安晓文,阿拉塔,等.速度脉冲型地震动对隔震结构减 震系数影响研究[J].建筑结构,2015,45(14);24-29. SONG Tingsu, AN Xiaowen, A Lata, et al. Study on Seismic Isolation Coefficient of Seismic Isolation Structure Subjected to Velocity Pulse Ground Motion[J].Building Structure,2015,45 (14);24-29.

[10] 刘阳,刘文光,何文福,等.长周期地震作用下考虑碰撞效应的 偏心隔震结构损伤性能评价[J]. 振动工程学报,2015,28 (6):910-917.

LIU Yang, LIU Wenguang, HE Wenfu, et al. Damage Performance Evaluation of Eccentric Isolated Structure System Considering Impact under Long-period Ground Motions[J]. Journal of Vibration Engineering, 2015, 28(6);910-917.

- [11] 杜东升,王曙光,刘伟庆,等.地震动频谱特性对隔震结构响应 及损伤影响研究[J].振动与冲击,2015,34(20):203-208. DU Dongsheng,WANG Shuguang,LIU Weiqing,et al.Influences of Spectral Characteristics of Earthquake Ground Motion on Seismic Responses and Damages of Base Isolated Structures[J].Journal of Vibration and Shock,2015,34(20):203-208.
- [12] 李雪红,王文科,叶鑫,等.近场长周期地震动脉冲特性对减隔 震桥梁地震响应的影响研究[J]. 公路,2015(9):96-103.
 LI Xuehong, WANG Wenke, YE Xin, et al. Research on the Effect of Pulse Properties on the Seismic Response of the Isolated Bridge under Near-fault Long-duration Ground Mation [J]. Highway, 2015(9):96-103.
- [13] 孙颖,陈天海,卓卫东,等.长周期地震动作用下隔震连续梁桥 地震反应特性研究[J].工程力学,2016,33(增刊1):244-250.
 SUN Ying, CHEN Tianhai, ZHUO Weidong, et al. Study on Seismic Response Characteristics of Isolated Continuous Bridges Under Long-period Ground Motion[J]. Engineering Mechanics, 2016, 33(Supp1): 244-250.
- [14] 赵益彬,吕西林.高层隔震结构在长周期地震动作用下的响应 分析[J].结构工程师,2016,32(3):77-85.
 ZHAO Yibin,LÜ Xilin. Structural Response of High-rise Base-isolated Buildings under the Action of Long-period Ground Motions[J].Structural Engineers,2016,32(3):77-85.
- [15] 王亚楠,杜永峰,李慧.脉冲型地震动作用下隔震结构动力响 应的影响参数研究[J].地震工程学报,2016,38(5):707-712.
 WANG Yanan, DU Yongfeng, LI Hui. Parametric Study on Dynamic Response of Base-isolated Structure Subjected to Pulse-like Ground Motions[J].China Earthquake Engineering journal,2016,38(5):707-712.
- [16] Alhan C, Öncü-Davas S. Performance Limits of Seismically Isolated Buildings under Near-field Earthquakes [J]. Engineering Structures, 2016, 116:83-94.