Vol. 27 No. 1 March, 2005

关中、陕南及周边地区尾波衰减特性(Q_{c})研究

孟智民,谢家树,张 宪

(陕西省地震局,陕西 西安 710068)

摘 要:根据单次散射模型的尾波功率谱分析方法,利用陕西数字地震台网宽频带数字地震波形记录资料,计算了关中陕南及周边地区 13个频段的 Q_c值。结果显示:在 2t_s~35 s 的时间窗内,Q₀值 在 37.54~72.59 之间,全区平均值为 58.44,在上升运动显著的秦岭山脉值较大,关中盆地和陕南 值较小;在 2t_s~70 s 的时间窗内,Q₀值在 194.74~283.50 之间,全区平均值为 186.79,莫霍界面 高波速区值较大,低速区和低速梯度带值较小。

关键词:单次散射;功率谱;尾波 Q。值;时间窗 中图分类号:P315.3⁺1 文献标识码:A 文章编号:1000-0844(2005)01-0075-05

Research on the Q_c Value of Coda Wave in Shaannan, Guanzhong Area and Its Adjacent Region

MENG Zhi-min, XIE Jia-shu, ZHANG Xian (Seismological Bureau of Shaanxi Province, Xian 710068, China)

Abstract: According to the method of power spectrum analysis of individual dispersion model, using the wide—band digital waveform data recorded by Shaanxi digital seismograph network, the Q_c values of coda wave in 13 frequency bands in Guanzhong, Shannan and the adjacent areas are estimated. The result shows that the coda Q_0 values are in range of 37.54~78.59 with the average value of 58.44 in the $2t_s \sim 35$ s time window, and are higher in Qinling mountain chain region where the ascending motion is marked, otherwise are lower in Guanzhong basin and Shannan area. In the $2t_s \sim 70$ s time window, the Q_0 values are in range of 194.74~283.50 with the average value of 186.79, and are higher in wave highvelocity area of moho—discontinuity comparing with lower values in wave lowvelocity area and lowvelocity gradient belt.

Key words: Individual dispersion; Power spectrum; Q_{c} value of coda wave; Time window

0 引言

在地震波的研究中,尾波研究是一个重要领域。 地方震尾波可用地球介质中随机分布的多种非均匀 散射体对原生波的反向散射来解释^[1]。用单次散射 模型可以很好地解释尾波的许多特点,并为许多观 测事实所支持^[2]。目前根据单次散射理论研究尾波 衰减特性已获得一些重要结果^[3-12]。这些结果表 明:尾波 Q_c 值与频率表现出较强的依赖关系,可近 似表示为幂指数形式 $Q_c = Q_o f^n$ 。构造活动较强的 地区尾波衰减较快;构造活动较弱的地区尾波衰减 较慢^[11-12]。 地震波在介质中的耗散情况,不仅对测定震源 参数以了解地震的孕育发生及破裂过程十分重要, 而且有可能对地震预报、工程抗震及减小地震灾害 提供一些有较明确物理意义的信息。

本文利用陕西数字地震台网宽频带数字记录资料,根据尾波单次散射模型,用两种时间窗,研究分析了关中、陕南及周边地区尾波Q。值空间分布。

1 方法原理

根据单次散射模型,尾波功率谱可表示为[2]

收稿日期:2004-07-23

作者简介:孟智民(1959一),男(汉族),陕西西安人,工程师,现从事测震监测和研究工作.

西北地震学报

$$P(\omega/t) = \frac{v}{2}g(\pi)\varphi_0 \left| (\omega \mid \frac{vt}{2}) \right|^2 \exp\left(-\frac{\omega}{Q_c}t\right)$$
(1)

其中, φ_0 $\left| \left(\omega \right| \frac{vt}{2} \right)$ 是在假设的无耗介质中 r = vt/2 处 直达波的富里叶变换; $g(\pi)$ 是反向散射系数;t 是从 发震时刻起算的流逝时间; $v \ \pi \omega$ 分别为 S 波速度 和角频率; Q_c 为尾波衰减品质因子。

Sato(1977)提出了单次各向同性散射模式,导出了角频率为ω的散射S波能量密度

$$E_{s}(\omega t) = \frac{W(\omega)}{8\pi L R^{2}} K(\frac{t}{t_{s}}) \exp(-\frac{\omega}{Q_{c}}t) \qquad t > t_{s}$$
(2)

式中 t_s 为S波走时;W(ω)是角频率为 ω 的S波的能量;R为震源距; $L = 1/n_0 \sigma$ 是地球介质中S波的平均自由程。函数K为

$$K(\alpha) = \frac{1}{\alpha} \ln(\frac{\alpha+1}{\alpha-1})$$
(3)

三维情况下单次散射尾波功率谱为[13]

 $P(\omega/t) = \frac{n_0 \sigma v S(\omega)}{4a_1 c_1} \ln(\frac{a_1 + c_1}{a_1 - c_1}) \exp(-\frac{\omega}{Q_c} t) (4)$ 其中,S(w)为震源谱因子; $2a_1 = r_1 + r_2 = 2r = vt$ 为 散射波所通过的全路程; $2c_1 = d$ 为震源距。

对于窄频带通滤波信号, $P(\omega/t)在频率 \omega_1 > \omega$ > ω_0 之间不为零,而在其它频率范围等于零。地震 尾波记录的均方根振幅为[2]

 $<A^{2}(\omega t)>^{1/2} = [2P(\omega/t)\Delta f]^{1/2}$ (5) 其中 $\Delta f = (\omega_{1} - \omega_{0})2\pi$ 为带通滤波器的频带宽度。 把式(4)代入式(5)可得

$$\langle A^{2}(\boldsymbol{\omega}t) \rangle^{1/2} = \left[2P(\boldsymbol{\omega}/t) \Delta f \right]^{1/2} = \left[\frac{n_{0} \sigma_{U} S(\boldsymbol{\omega}) \Delta f}{2a_{1}c_{1}} \ln(\frac{\alpha_{1}+c_{1}}{\alpha_{1}-c_{1}}) \exp(-\frac{\boldsymbol{\omega}}{Q_{c}}t) \right]^{1/2} \quad (6)$$

令 $C(\omega) = [2S(\omega)\Delta fLv]^{1/2}$,若频带宽度 Δf 仅为频 率的函数,则 $C(\omega)$ 就只是频率的函数。定义经过震 源距校正的尾波折合均方根振幅为 $A_{c}(\omega t)^{[12]}$:

$$A_{c}(\omega t) = \langle A^{2}(\omega t) \rangle^{1/2} \cdot \left[tt_{s} \ln(\frac{t+t_{s}}{t-t_{s}}t+t_{s})^{1/2} \right]^{1/2}$$
(7)

由式(6)和式(7)得

$$A_{c}(\omega t) = C(\omega) \exp(-\frac{\omega}{2Q_{c}}t)$$

两边取自然对数得

$$\ln A_{\rm c}(\omega t) = \ln C(\omega) - \frac{\omega}{2Q_{\rm c}}t \qquad (9)$$

相应地, $\ln A_c(\omega t)$ 与流逝时间 t 之间呈线形关系, 直线斜率即为 $-\omega/2Q_c$ 。

2 资料选取及其处理

陕西数字地震台网使用 FBS-3 型宽频带地震 计和 EDAS-C24B 型的 24 位数据采集器,其频带 宽 0.05~20 s,采样为每秒 50 次。在 2001 年 1 月 -2004 年 4 月期间宽频带记录资料中选取了 54 个 波形记录清晰,无干扰噪声叠加的,并且至少有一个 台在 70 km 之内有记录的地震的波形资料进行尾 波分析。

为了计算不同频率所对应的介质 Q。值,采用了 分频道地震图的方法,通过数字滤波由宽频带数字 记录得到多道分频道地震图。所用带通滤波器的参 数列于表 1。对分频道地震图分别进行尾波分析, 从而求得各频率的 Q。值。尾波均方根振幅的计算 是在一时间窗内进行,窗函数宽度取为 2 s,同时以 1 s 为步长滑动取样窗口,计算尾波均方根振幅随流 逝时间 t 的变化。每个时间窗内地震信号的均方根 振幅 A_s为

$$A_{\rm s} = A_{\rm T} - A_{\rm N}$$

式中 A_T是该时间窗内记录信号均方根振幅,A_N是 噪声水平。利用地震 P 波初至到达之前记录的背 景噪声来计算。

表1 带通数字滤波器的参数

频道号	中心频率	带宽	1125 125 121	中心频率	带宽
	$f_{\rm c}/{\rm Hz}$	/Hz	敷進ぢ	$f_{\rm c}/{\rm Hz}$	/Hz
1	原始宽频带	记录波形	8	5.0	2.6
2	1.2	0.6	9	6.3	3.2
3	1.6	0.8	10	8.0	4.0
4	2.0	1.0	11	10.0	5.0
5	2.5	1.2	12	12.6	6.4
6	3.2	1.6	13	16.0	8.0
7	4.0	2.0	14	20.0	10.0

尾波的起始点取流逝时间在 2 倍 S 波走时 ($2t_s$)之后。当 S 波初至难以辨认时,取 $t_s = 1.732t_p$ (t_p 为 P 波走时)^[12]。为了避开多次散射的作用,流 逝时间限制在 70 s 之内。当信号的均方根振幅小 于 2 倍噪声水平时,停止计算 A_s 。

对应不同的带通数字滤波器的中心频率 f_c , Q_c 值由最小二乘法确定。已经发现 Q_c 值与频率表现 出较强的依赖关系^[4,9,11-12],可近似表示为幂指数 形式 $Q_c = Q_0 f^n$ 。用各频率的 Q_c 值按此式拟合即可 得 Q_0 和 n 值, Q_0 对应于频率为 1.0 Hz 的地震波衰 减 Q_c 值。以宁陕台记录的 2002 年 1 月 28 日 M_L 2.3地震为例(震中: φ_N 33.56°, λ_E 108.12°; 震源深度 12 km; 震中距 32.4 km。图 1 为地震的记录波形。 第 1 道为 NS 向的原始宽频带记录波形,第 2 道至

77

第 14 道为中心频率 f。和带宽如表 1 所示的窄频带 通滤波的波形。图 2 是窄频带通滤波后波形资料计 算不同的 Q。值进行幂指数形式拟合曲线及 Q。和 n 值。基于单次散射模型的尾波功率谱分析方法,处 理了发生于关中陕南及周边地区 54 个地方震宽频 带数字记录资料,计算了流逝时间分别为 2t。~35 s 和 2t。~70 s 两种时段,关中、陕南地区不同频率地

图 2 图 1 所示不同频率的 Q_c 值及拟合曲线 Fig. 2 Q_c values with different frequency and fitting curve from Fig. 1.

震尾波衰减因子 Q。值和 Q。值、n 值。并计算了各子 台附近介质的 Q。值和 n 值,结果列于表 2。

3 尾波 Q。值与时间窗的关系

由本文和许多研究者的工作证实,尾波 Q。值与 时间窗变化是有关系的^[3,5,11]。尾波 Q。值虽与地震 波传播的具体路径无关,却与采样区域有关,反映了 该区域内的局部平均性,而时间窗的不同正是表示 了不同的采样范围。尾波的采样区是一个以接收台 站和震源为焦点的椭球体。假定为表面震源,该椭 球面在通过两焦点的铅垂平面的投影方程^[11]:

$$\frac{x^2}{(ut2)^2} + \frac{z^2}{(ut2)^2 - r^2 4} = 1$$
(10)

取 v=3.5 km/s,r=30 km,图 3 给出了尾波采样范 围随时间 t 的变化。尾波散射理论考虑了地球介质 的小尺度不均匀性,而把这种不均匀性在大尺度内 认为是统计分布上有均匀性,从而求得一个区域内 统计平均的结果。当这种小尺度的不均匀性在大尺 度内也是不均匀时,不同的采样范围必然会得到不 同的结果。本文的时间窗选取 2t,~35s 和 2t,~70s

~~~	n
· /	~
•	6.3

<u>西北地震学报</u> 表 2 各子台附近地球介质的平均 Oc 值

第27卷

台站名	时间窗 2t _s ~35 s						时间窗 2ts~70 s			
	$Q_0$	方差	n	方差	地震数	$Q_0$	方差	n	方差	地震数
宁陕	71.57	12.28	1.326	0.132	10	166.53	18.14	0.860	0.157	14
太白	66.48	8.83	0.957	0.243	3	173.53	23.53	0.785	0.201	2
乾县	54.40	10.14	1.182	0.173	2	228.60	28.62	0.837	0.309	2
汉中	57.69	9,98	1.154	0.231	3	135.46	12.44	1.045	0.207	3
泾阳	58.56	10.85	0.955	0.246	1	194.74	25.86	0.914	0.234	4
西安	47.05	8.92	1.405	0.198	2	283.50	29.91	0.894	0.198	6
蒲城	50.81	11.37	1.496	0.218	2	171.63	26.73	1.096	0.216	2
合阳						158.30	19.49	0.864	0.139	2
华阴	69.96	10.68	1.215	0.201	6	239.32	24.28	0.785	0.228	5
周至	72,59	12.14	1.087	0.328	6	151.47	18.16	0.877	0.236	8
安康	37.54	8.79	1.428	0.169	4	131.12	15.37	0.918	0.198	3
陇县	56.20	8.24	1.272	0.193	4	207.31	23.86	0.784	0.218	3

两种,前者计算结果主要反映了地壳介质的情况;后 者计算结果反映的范围较深,相应于地壳及地幔顶 部的平均效果。



## 4 尾波 Q。值的空间分布

由于台站在区域上的布设不均匀,而所发生地 震的位置呈条带状或随机的聚散状;又因符合单次 散射模型尾波功率谱分析的地震波形样本所限,有 的台记录波形样本数较多,有的较少。所以仅计算 了一些离散点的尾波 Q。值和 n 值(表 2),但总体上 反映了关中、陕南地区尾波 Q。值的一些特点。

如图 4 所示,对于 2t_s~35 s 时间窗,主要反映 了地壳介质的平均值,Q。值较低。全区在 37.54~ 72.59 的范围变化;中部的太白、宁陕、周至、华阴 Q。值较大,在 66.48~72.59 之间;南部和北部的 Q。 值较小,在 37.54~58.56 之间。这可能与本区的地 质构造有关:本区的北部为一地堑型新生代断陷盆 地,盆地内沉积巨厚的新生界地层;中部为上升运动 显著的秦岭山脉;南部为断块差异运动显著的秦巴 山区,区内断裂发育。



- 图4 关中、陕南地区台站和尾波 Q。 值分布图 (括号内为 2t_s~35 s 时间窗的值,括号外 为 2t_s~70 s 时间窗值)
  - Fig. 4 Distribution of stations and  $Q_0$  values in Guanzhong and Shannan area.

对于 2t_s~70 s 时间窗,主要反映了地壳介质及 上地幔顶部平均结果,全区 Q。值在 131.12~283.50 范围内变化;在陇县、乾县、泾阳、西安、华阴范围内, Q。值较大,在 194.74~283.5 之间;汉中、安康的值 较小,分别为 135.46 和 131.12。

对照莫霍界面速度等值线分布图(图 5),由陇 县、乾县、泾阳、西安、华阴围成的 Q。较大值区,属于 西安、宝鸡高波速区,区内速度值很均匀,约 7.9 km/s。Q。值较小的汉中、安康分别属于汉中~宁强 低速梯度带和安康~岚皋低速带。前者速度从 7.9 km/s 由北向南急剧减小至 7.2 km/s;后者速度值 为 7.6~7.3 km/s^[14]。 第1期

维普资讯 http://www.cqvip.com





Fig. 5 Velocity isogram of Moho discontinuity beneath weihe fault depression and its adjacent areas.

5 结论和讨论

根据单次散射模型的尾波功率谱分析方法,计 算了关中、陕南及周边地区尾波衰减因子 Q₀值。在  $2t_s \sim 35$  s时间窗,全区平均 Q₀值为 58.44,n值为 1.225。在  $2t_s \sim 70$  s时间窗,全区平均 Q₀值为 186.79,n值为 0.888。前述分析显示,在  $2t_s \sim 35$  s 时间窗,地壳介质尾波衰减因子 Q₀值与地质构造有 重要的关系;在  $2t_s \sim 70$  s时间窗,Q₀值主要受地幔 顶部介质特性影响,高波速区 Q₀值较大,低波速区 Q₀值较小。

地区名	Q ₀ 值	n 值	时间窗	资料来源	
河北滦县	46	0.85	34~45s	李松林,1990	
	72	0.9	51~72s		
四川成都	117	0.975	$2t_{s} \sim 70s$	曾健,1997	
云南施甸	77	0.75	$2t_{s} \sim 60s$	钱小东,2004	
北京地区	113	小于1	$30 \sim 60 s$	马云生,1995	
滇西地区	88		19.5~58.5	张天中,1990	
关中陕南	186.79	0.888	$2t_{s} \sim 70s$	本文	

表 3 一些地区尾波衰减因子统计表

我们统计了一些地区 Q。值的测定结果(表 3)。 研究结果显示^[4,11-12]构造活动的地区衰减较快(Q。 值较小),而稳定地区则相反。构造活动地区 Q。对 频率的依赖性较强(n值较大),随频率增加而很快 地增加;而稳定地区的 Q。值则呈现出对于频率的弱 依赖性。由表 2 知,在 2t,~35 s 的时间窗内,本区 东部(宁陕、西安、蒲城、安康、华阴)n 值在 1.215~  496 之间,明显大于本区西部(汉中、乾县、太白、 泾阳、周至 n 值在 0.955~1.182 之间)n 值,显示了 本区东部 Q。值对频率的依赖性较西部强。



图6 几个地区测定的 Q_c⁻¹和 f 关系曲线

Fig. 6 Relation curves of  $Q_c^{-1}$  and f in some area.

由表 3、图 6 知,相对于河北滦县、四川成都、云 南施甸,关中、陕南及周边地区的 Q₀值较大,n 值较 小。这是否蕴示着本地区构造活动较上述三地区 弱,值得我们进一步探讨分析。

#### [参考文献]

- Aki K. Analysis of the seismic coda of locad earthquakes as scattered waves[J]. J. Geophys. Res., 1969, 74, 615-631.
- [2] Aki K, Chouet B. Origin of coda waves: source, attenuation, and scattering effects[J]. J. Geophys. Res., 1975, 80: 3322-3342.
- [3] 张天中,高龙生,张卫平. 滇西试验场的 Q 值 及其随时间窗的 变化[J]. 地震学报,1990,12(1):12-21.
- [4] 高龙生,石汝武,华正兴,等.唐山一北京地区Q因子随频率的 变化[J].地震学报,1986,8(4):354-365.
- [5] 马云生,张天中,张焕生.北京及其周边地区尾波Q值分布特 征的研究[J].地震学报,1995,17(4):448-458.
- [6] 钱晓东,李白基,秦嘉政.2001年云南施甸 Ms5.9 地震余震序 列尾波 Qc值研究[J]. 地震地磁观测与研究,2004,25(1):9-17.
- [7] 胡家树,丛连理,苏有锦,等.云南及周边地区 Lg 尾波 Q 值的 分布特征[J].地球物理学报,2003,46(6):809-813.
- [8] 张耀国,杨桂珍.利用尾波测定四川部分地区的介质品质因子
  [J].地震学报,1983,5(3):304-312.
- [9] 秦嘉政,李宁,胡克坚.1985年云南禄劝地震余震尾波Q值的 某些研究[J].地震学报,1987,9(3):237-251.
- [10] 黄才中,葛焕称.中国东部的尾波衰减特征和 Q。值估计[J]. 地震学报,1995,17(2):196-202.
- [11] 李松林, 樊计昌, 惠乃玲, 等. 读县地区尾波 Q 值及其与频率 关系的研究[J]. 地震学报, 1990, 12(4): 357-366.
- [12] 曾健,陈天长,韩渭宾,等.成都遥测台网区域尾波衰减特征及 Qc值研究[J].地震学报,1997,19(3),246-253.
- [13] 聂永安,曾健,冯德益.三维尾波散射问题的理论研究[J].地 震学报,1995,17(1):83-87.
- [14] 袁志祥,薛广盈,丁韫玉,等. 渭河断陷及临近地区莫霍界面速 度图象[J]. 地震地质,1995,17(1):446-451.