甘肃东部地区Q值的分布(一)

张 诚 杜志俊 付印发(国家地震局兰州地震研究所)

摘 要

本文在假定地球介质为粘弹性的基础上,测定和分析了东经103°以东的甘肃地区和宁夏西海固地区的介质品质因子Q值,由P和S功率谱计算的地震的平均Q值为126,低值区平均Q值为58。海原及礼县Q值较高,其平均Q值分别为194和957,选部Q值较低,其平均Q值为48。这些高值和低值均出现在主震前后。

一、前言

在现今我国的地震预报工作中,探求地震前兆的思路和方法有多种,其中之一是研究地震前后介质Q值的变化特征。目前,测定Q值的方法还在研究中,现在国内应用的方法 有两种:一是用体波 $(P \setminus S)$ 波)测定 $(1 \setminus 2 \setminus 3)$,获得主震前体波Q值高,主混后Q值低的结果,另一种是用尾波测定,结果表明主震前尾波Q值低(4)。可见采用不同类型的波、不同方法测定的结果是有较大差别的。本文采用文献(5)给出的方法,研究甘肃东部和宁夏西海固地区的Q值的分布特征。

二、资料

本文选用兰州电讯传输台网中分布在甘肃东部地区的盐池(兰州)、永登、定西、景泰、临夏、通渭、平凉、天水、武山、礼县、武都、岷县和文县13个台站(图 3)1985—1987年的资料。使用该台网131数字化处理系统,采集直达波(\overline{P} 、 \overline{S})垂直分量波形数据。共筛选出甘肃东部和宁夏西海固 地区 发生的 \overline{Ms} = 1.4—3.7级 地 震55次(4.9 级 地 震 1 次),共331台 次,其中 \overline{P} 波206 台 次, \overline{S} 波125台次,共采集26416个振幅数值。

采集数据时,选取波形清晰噪声小的记录,采样时间约2秒,每秒50次,采样率为0.02秒,谱分析采用余弦窗,谱频率上限为25赫芝,下限为0.5赫芝,分辨率为0.5赫芝。

三、方法

本文应用文献[5]的方法,该方法假定地球介质是均匀的、非弹性的、各向同性的固

体, 地震波在这样的粘弹性固体中传播, 其P波在地面上的位移方程为:

$$u(x,t) = A_0 - \frac{1}{X^n} \exp\left(-\alpha_k \omega^k - \frac{X}{2}\right) F(Az) G(t) \quad . \tag{1}$$

其中 A_0 为震源的初始振幅,1/X*是几何扩散因子, $\exp\left(-\alpha_k \omega^k \frac{X}{2}\right)$ 是衰减因子(k=0,1,

2),F(Az)是方向性函数,G(t)是时间函数。为突出粘弹衰减因素,对功 率 谱采取 切比雪夫拟合逼近,即

LnS(f,x) =
$$a_0 + a_1 f + a_2 f^2 + \cdots$$
 (2)

对于震中距不同的两个台, 其功率谱之间应满足

$$S_2(f,x_2) = S_1(f,x_1) \exp(-\alpha_k(2\pi f)^k \Delta x)$$
 (3)

(5)

(6).

(7)

零线校正等

功率谱计算 (建立谱随机读取文件,绘制谱图形)

切比雪夫功率谱计算拟合。

符合因果律关系的K-K变换计算

分区Q流计算

计算结果输出

轮机

其中

$$\Delta \mathbf{x} = \mathbf{x}_2 - \mathbf{x}_1 \quad \bullet$$

若设f₂是主频,则有

$$\frac{dS_{2}(f,x_{2})}{df}\bigg|_{f=f_{2}}=0 \quad .$$

从而给出衰减系数和Q值的计算公式为:

$$\alpha_{k} = \left[\frac{dS_{1}(f, x_{1})/df}{S_{1}(f, x_{1})} / k(2\pi)^{k} f^{k*1} \Delta_{X} \right] \Big|_{f = f_{2}}$$

$$L S_1(f, x_1) / f = f_2$$

k = 1, 2; $\alpha_0 = (LnS_1(f, x_1) - LnS_2(f, x_2))/\Delta x;$

$$Q_{\tilde{e}} = \frac{1}{2} \left(\frac{2}{\alpha_k \omega^{k+1} C} - \frac{\alpha_k \omega^{k+1} C}{2} \right) \quad . \label{eq:Qepsilon}$$

其中波速C应满足K-K关系:

$$\frac{\omega}{C(\omega)} = \frac{\omega}{C_{\infty}} + H(\alpha(\omega)) \quad .$$

(7)式中 C_{\bullet} 是频率很大时的波速,H表示希尔伯特变换。

依赖于频率的Q值为:

$$Q_a^k = Q_k (f_2, f), K = 0,1,2$$
 (8)

当k = 1时,Qk = 15频率无关。

对于每个地震,由三个台以上的Q值求平均。Q₆表示用P波计算的Q值,Q₅表示用S波计算的。由S波计算Q值的过程与P波相同,不同之处主要是推导S波的地面位移方程式时,考虑了横波的位移特性。以1985年1月15日宁夏海原2.5级地震为例,将由131数字化系统采样,计算的P波功率谱及切比雪夫拟合图示于图 2 中。图 1 为计算 Q 值的程序方框图。

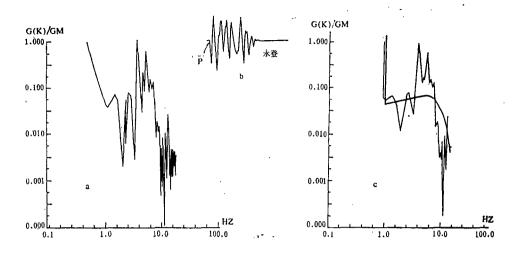


图 2 1985年 1 月15日 宁夏海原 2.5级 地震(h = 20km) a.P功率谱图 b.回放P被形 c.功率谱切比雪失积合图

Fig. 1 The Haiyuan earthquake (M=2.5) on Jan. 15, 1985 in Ningxia

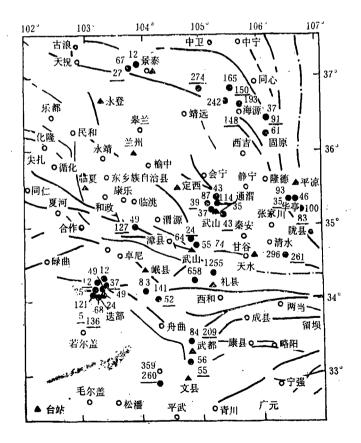


图 3 甘肃东部地区的电讯传输台网分布和Q值分布(图中带横线的数字 为 Qā, 不带横线的为Q₁)

Fig. 2 Q value and electric communication transmission station distribution in the eastern Gansu

四、计算结果

本文共计算出东经 103° 以东的甘肃东部和宁夏西海固地区的Q。值32 个,Q。=12-1255,Q。值22个,Q。=5-274,Q。和Q。平均值 $\overline{Q}=126$ (见表 1 和图 3)。其中高值 区 为:海原($\overline{Q}=194$)、礼县($\overline{Q}=957$)、清水($\overline{Q}=279$)和南坪($\overline{Q}=310$)。低值区平均Q值为58。

表 1

甘肃东部地区的Q值及地震基本参数

, E #			发展时刻			展中位置		h	М.	جد بابيد	Q		
年	月	Ħ.	时	分	秒	φ	λ	公里	Ms	地点	Qa	Qβ	注
1985	1	14	10	50	8	37.107	103.807	1	2.7	景泰	67	24	}
		15	20	01	11.3	36.807	105.453	20	2.5	海原	165	150	
	2	9.	09	46	37.7	34.063	103.965	1	2.3	岷县	83		1
		9	13	59	40.3	34.759	104.768	22	1.9	陇西	64	24	'
	8.	25	17	43	54.2	35.31	105.424	7	2.1	通渭	43		
	4	22	06	08	23.6	36.767	104.961	17	17	增远		274	
	4	29	22	. 17	15.7	36.739	105.44	14	2.0	海原	193	140	
		29	09	22	48.1	36.212	106.08	29	3.2	固原	61.	İ	
	5	21	18	51	47.1	33.372	104.806	14	1.9	武都	84	200	
		23	18	Б9	33.5	33.131	104.807	15	2.4	文县	56	55 .	
	.6	24	98	24	29.7	33.999	104.315	6	4.9	宕昌		52	, ,
		24	15	24	51.7	33.994	104.322	0	2.5	沿昌	141		
	7	24	03	43	38.5	35.002	103.776	13	1.9	临潭	49	129	
	11	16	18	26	35,5	34.498	104.874	9	1.8	山海	55	74	1.
	12	11	04	02	30.6	35.093	105.268	14	1.7	通渭	35	43	
		16	00	56	53.8	32.085	103.792	0	2.1	绿景	12		
1986	2	12	03	46	51.2	35.333	105.333	8	1.6	通渭	87	39	
		14	06	57	10.8	32.9	104.296	21	2.6	文县	359	260	
	5	26	01	- 30	37.5	35.217	106.667	12	3.7	华亭	46	1	Ì
	8	21	13	00	24.6	35.329	105.202	11	2.7	通滑	37	114	
	9	8	14	26	44.5	34.517	106.431	19	2.3	清水	296	261	
		26	01	24	46.6	36.39	136.112	22	2.5	海原	37	31	
	10	25	02	46	13.6	36.667	105.60	6	1.4	海原	242 .		
1987	1	8	02	29	59.9	34.203	103.216	11	3.0	选部	25	'	ļ
		8	02	48	18.8	34.225	103.269	11	2.3	迭部	49		٠,
		8	19	35	25.1	34.167	103.30	8 .	2.8	迭部	24		ļ
		9	14	54	46.0	34.314	103.296	1	2.5	迭部	12	37	
		14	13	39	5.0	34.205	103.31	0	2.7	迭部	40		
		19	02	53	4.5	34.172	103.3	0	2.6	迭部		12	
		23	20	48	57.1	34.15	103.212	0	3.1	选部	121	5	1
		24	04	14	41.7	34.141	103.258	0	3.1	迭部	68	136	
		29	01	35	43.3	35.336	106.535	17	2.3	华孚	93	35	
	2	14	04	58	11.7	34.448	105 - 23	22	1.7	礼县	1255		
	5	6	17	10	34.2	35.21	106.655	3	2.8	华亭	100	33	
	8	12	02	17	38.1	34.345	104.775	21	2.1	礼县	658	1	

五、讨 论

影响地震波衰减的因素是很复杂的,如地壳的纵向、横向不均匀性、震源幅射的方向性、波的散射和波阵面的几何扩散、振型干涉和仪器频响等,尽管对各种影响进行了可能的校正,但仍使Q值的精度受到影响。由于Q值表征介质内摩擦与散射的能量耗损,因而采用不同方法、不同波类计算的结果差异较大,而且随地壳结构和地震活动性的差异,Q值具有区域性特征,如陈运泰等[1]采用圆盘形位错模式和P波初动振幅和半周期,计算云南巧家地区的Q=620,石棉地区的Q=560,林邦慧等[2]以同一模式计算出1976年7月唐山7.8级地震前Q值最高(Q=660),1976年11月宁河6.9级地震前Q值略有下降(Q=606),至1977年5月宁河6.2级地震前Q值下降较多(Q=357),主震前Q值比余震高1一2倍;朱传镇等[8]采用等效弹性球模式,用P波振幅谱计算了1975年2月海城7.3级地震前Q=500—600,震后在震中区西南方向上Q=180,高低值之比约为3:1;而本文给出的平均Q=126,低值Q=58。因此,对不同作者的结果,比较时应取相对值的对比,即高低值之比,並且考虑其他影响因素。

对于甘肃东部地区,将Q = 194(海原地区)及其以上定为高值,将全区平均Q = 58定为低值,高值为低值的 3 倍以上,这与海城、唐山大震前后的Q值的高低值之比相似。

海原地区的Q值是用1985、1986年小地震测得的,即是在1982年 4 月海原5.5级地震后4年测的。该次地震至今已六年了,区域应力场可能有所加强,这与Q值偏高的结果是一致的。从海原与灵武地区的地震迁移关系看,1988年元月 4 日、10日灵武发生5.4级和5.3级地震,海原地区在短期内有可能发生中强震。礼县地区的测值是在1987年10月25日5.5级地震之前,因此Q值偏高。迭部的测值在1987年元月 8 日5.9级地震之后,属余震Q值,因此其值 较低。 $\overline{Q}=49$,接近于全区的平均值。上述结果表明,中强震前Q值高,中强震后或余震的Q值低。

由于资料的限制,本文未能给出中强震全序列的Q值分布,所以对该地区中强震前后的 Q值分布,尚需进一步研究。

(本文1988年6月23日收到)

参 考 文 献

- [1]陈运泰等, 巧家、石棉小震展源参数的测定及其地震危险性的估计, 地球物理学报, Vol.19, No.3, 1976.
- [2]林邦慧等,京津地区Q值及平均应力降的分布特征,地球物理学报, Vol.25, No.4, 1982.
- [8]朱传镇等,海城地震前后微震震源与介质品质因子,地球物理学报, Vol.29, No.3, 1977.
- (4) 高龙生, Q值研究的进展和问题, 地震地磁观测与研究, Vol.6, No.6, 1985.
- (5)杜志俊, 滇西地区近濮P波及粘性Qā值的测定, 地震研究, Vol.12, No.1, 1989.

Q VALUE DISTRIBUTION IN THE EASTERN AREA OF GANSU PROVINCE (I)

Zhang Cheng, Du Zhijun, Fu Yinfa (Earthquake Research Institute of Lanzhou, SSB, Gansu, China)

Abstract

This paper determines and analyses crust medium quality factor, Q value, in the eastern Gansu area and Xiji-Haiyuan-Guyuan area of Ningxia, assuming that crust medium is visco-elastic. The mean Q value calculated by power spectrum of the direct P and S wave is 126. The mean Q value is 58 in low value area. The Q values are high in Haiyuan and Lixian area, the mean Q value is 194 and 957 respectively. The Q value is low in Diebu area, its mean Q value is 48. These high and low Q values occurred before and after main earthquake.