西北地震学报

1989年9月 NORTHWESTERN SEISMOLOGICAL JOURNAL Sept., 1989

甘、青、宁地区近震震级测定的改进及其起算函数的修正。

1.前官

震级是描述一个地震的重要参数之一。目前在震级测定工作中还存在着一些问题,使得 所测定的震级不统一而且不够精确,尤其是近震震级Mrd的测定更是这样。观测结果表明, 不同区域台网测定的M_L可差0.5级。影响M_L测定的因素很多,其中起算函数的 区域 性影响 是主要的因素,因为起算函数表示地震波随震中距的平均衰减的特性,此特性与当地的地壳 构造有密切的关系。我国现行使用的M_L起算函数R₁(Δ)和R₂(Δ),是在里克特原始 起 算函数R₀(Δ)的基础上,经过对62、64型短周期地震仪和SK型中长周期地震仪记录的最大 振幅卓越周期的改正得到的。中国大陆地区和里克特建立原始起算函数的美国加利福尼亚地 区的地壳结构不同,中国大陆内部各区域的地壳结构差异也很明显,因此应针对各个地区的 实际情况,建立起适合本地区的起算函数,以提高近震震级测定的 精度。本文 讨论了西北 (甘、青、宁)地区近震震级测定的改进及其起算函数的修正,制定了反映该地区地壳构造 和地震波衰减特性的更为精确的起算函数。

2.方法

¥

Ν.

我们采用震级残差修正的方法^[1],对第i个地震第j个台,按公式M_L=logAu+R(Δ) 求得震级M_{L1},然后对第i个地震,对所有记录到的台求震级平均值和标准误差。

$$M_{Li} = \sum_{i=1}^{N} M_{Lij} / N_{Si}$$
(1)

SD (
$$M_{Li}$$
) = $\left(\sum_{j=1}^{N_s} (M_{Lij} - M_{Li})^2 / N_s\right)^{1/2}$; (2)

SD (M_L) =
$$\sum_{i=1}^{N_e}$$
 SD (M_{Li}) / \sqrt{Ne} . (3)

将平均震级值作为第i次地震的 M_L 标准震级值,求各 台 震 级 与 平 均 震 级 M_L i 的 残 差 值 ΔM_L i,

$$\Delta M_{Lij} = M_{Lij} - M_{Li} \tag{4}$$

 $(i = 1, 2, \dots, N_{e}, j = 1, 2, \dots, N_{s})$

作出 ΔM_{Lii} 随震中距离 Δ 的变化图。对该图的点按20km的间距进行平滑,得到一条平滑曲 线。于是把这样得到的震级校正值与R(Δ)相加,得到一个新的起算函数R_s(Δ)。然后 再把 ΔM_{Lii} 对地震相加,得到台基校正值S_i。

$$S_{j} = \sum_{i=1}^{N_{o}} \Delta M_{Lij} / N_{o} (j = 1, 2,, N_{s})_{o}$$
 (5)

^{*}地震科学联合基金(89一KJ04号)和国家地震局(87度科字032号)专项研究经费资助课题, 参加本项工作的还有高国英、肖丽珠,

4

)

3.资料

资料取自《甘肃省地震台网观测报告》,适当补充了青海、宁夏地震台网的观测资料。 选取 1980 年 1 月—1983 年12月在北纬 32°—42°,东经91°—108°范围内发生的319次地震, 共5366个动力学数据。震级区间为 $M_L = 2 - 5.9$ 。其中 2 —2.9级 地 震154次; 3 —3.9级地 震135次; 4 —4.9级27次; 5 —5.9级 3 次。

台站位置和震中分布见图1。台站仪器和台基岩性见表1。

图1 台站位置和震中分布图

4.结果

(1)起算函数R₃(Δ)

我们作出了61个台站记录的319次地震的 ΔM_{Lii} 随震中距 Δ 的变化 图(图2)。由 图 2 可 以看出,在震中距 Δ <180km时,震级残差为负值,说明定出的震级 偏小; Δ <50km 时 偏 差更大;在 Δ >180km时,残差值为正,说明所定震级也偏大。由于 Δ >750km的资料点较 少,数据离散性太大,本文不作讨论。据此可以得到不同距离上震级的偏差值 $\Delta R(\Delta)$,即起算函数的改正值。由公式

 $R_{3}(\Delta) = R_{1}(\Delta) - \Delta R(\Delta)$

计算的修正后西北地区的起算函数 R_s (Δ)列于表 2 中。 R_s (Δ)曲 线 见图 3,图中也给

第3期

表 1

6

٠

¢

Ŧ

台站概况和台站校正值

台 站 编 号	台名	台站位置		/a) ###		at a tra	<u>人业投工</u>
		¢°	λ°	仪器	台基岩性	所属台网	台站校正值
1	九条岭	37,861	102.042	64,B73	石灰岩	甘肃	0.10
2	兰州	36,087	103.845	64,DD1	红砂岩		-0,11
8	盐池	36,131	103,751	PTY-8	花岗岩		0.01
4	刘家峡	35,982	103,263	VGK B73-Z	花岗岩		0.13
б	景泰	37,195	104,081	VGK,PTY-8 B73-Z	花岗岩		0.16
6	临夏	35,633	103,255	64,PTY-8 B73	花岗岩		0.11
7	嘉峪关	39.813	98.219	VGK,573-Z	白垩系砂岩		-0.09
8	河西堡	38.392	102,109	34,PTY-8 B73-Z	花岗岩		0.00
9	山丹	38,744	101.038	B73,B73-Z	花岗岩		0.02
10	永登	36,805	103.322	P.T Y-8	花岗岩		-0.11
11	峡门	35.463	106,665	B73, PTY-8	红砂岩		0,16
12	陇西	34,945	104.635	B73,VGK	B73,VGK 黄土		-0.04
13	定西	35,552	104.590	DD-1	DD-1 黄土		-0.14
14	静宁	35,528	105.761	64,B73	沉积岩		0.05
15	通渭	35,187	105.272	B73, PTY-8	花岗岩		0.01
16	张家川	35,019	106.262	473	花岗岩		0.04
17	甘谷	34.733	105.322	VGK	砂砾岩		-0.08
18	合作	35,008	102,906	B73			0.22
19	礼县	34.181	105,116	VGK,PTY-8	石灰岩		-0.40
20	天水	34.485	105,903	513,64	土黄		-0.40
21	成县	33.736	105,758	B73	二叠纪沉积岩		0.07
22	武山	34.652	105.048	РТҮ- 8	花岗岩		0.04
23	岷县	3 4,431	104.023	VGK,PTY-8	红砂岩		0.03
24	西峰	35.730	107.629	B73	黄土		0.23
· 25	武都	33.358	104.975	VGK,PTY-8	基岩		0.20
26	文县	32,949	104.678	B73,PTY-8	硅质砂岩		0.21
27	高台	39.411	99.814	62,B73	62,B73 花岗岩		0.25
28	镜铁山	39.310	97.941	VGK	石英岩	ļ	0.07
29	张掖	38.921	100.403	573			-0.05
30	安西	40.514	95,799	573	砾岩		-0.27
31	「「「「「」「」「」「」「」「」「」「」「」「」「」「」」「」」「」」「」」」	38.843	99.618	VGK	第三纪砂岩		••
32	局都して出	38.215	100.931	PTY-8	火山石		
33	白冈	37.025	102,706		「砂石」		
34 or	平波 老条山	38.(11	100.974		1 央内长石		
35	老守山 佐貴山	37.097 29.410	102.009	PII-0	化闪石		
30	江度山	38.410 20.728	102.801		妖石 概 本 岩		
37	白氏コ	36 712	100,192	VCK	灰 八石 红砂岩		-0.34
90 20	民勤	38 625	103.096	B73	モディー		-0.05
3 9 40	西宁	36 627	101 724	DR-1. DK-1 513	红色泥岩	│ 	-0.30
40	门源	37 472	107.4	DD-1.573	<u> </u>		0.08
#1 40	違源	36 657	101 19	DD-1, DK-1, 573	- 花岗岩		0.13
44	乐都	36,551	102.397	573	花岗岩		0.27
<u></u> 44	龙羊峡	36,15	100.942	573	花岗岩		-0.02
45	德令哈	37,38	97.378	DD-1, DK-1, 573	花岗片麻岩	l	0.14

91

第11卷

2

6

)

	· · · · · · · · · · · · · · · · · · ·						
台站	台 店 台名 号	台站	位置	心器	台荘岩姓	所属台网	白边校正值
编号		φ°	λ°				
46	大武	34.478	100.248	573	砂页岩		-0.03
47	乌兰	36.938	98.418	B73	花岗岩		0.01
48	香日德	36.09	97.863	573	石灰岩		0.10
49	格尔木	36.432	94.873	B73,DD-1,DK-1	砂粘土		-0.16
50	盐池	37,779	107.433	473	砂页岩	宁夏	-0.10
51	西吉	35,962	105.738	B73	红岩		-0.28
52	海原	36.543	105.630	473	片麻岩		0.40
53	固原	36.012	106.282	B73	松散沉积		-0.14
54	同心	37,207	106.441	573	变质岩		0,26
55	中卫	37.581	105.278	573	松散沉积		-0.42
56	泾源	35.484	106.34	B73	老第三系红土		
57	石咀山	39.294	106.681	573	松散沉积		-0.50
58	小口子	38,603	105.93	DD-1	花岗片麻岩		0.42
59	寺口子	36.271	105.98	573	变质岩		0.24
60	陇德	35,630	106.106	DD- 1			-0.74
61	玛多	34.878	98.169	VGK	板岩	青海	-0.26

续表1

表 2

西北(甘、青、宁)地区近震震级M_⊥起算函数R₃(△)

Δ	0-5	10	15	20	25	. 30	35	40	45	50
$R_1(\Delta)$	1.8	1.9	2.0	2.1	2.3	2.5	2.7	8.8	2.9	3 .0
Rs(A)	2.42	2.47	2,56	2.61	2.78	2.88	2.94	3,05	3.15	3,25
Δ	55	60-70	75	80—85	90-100	110	120	130-140	150—160	170—180
$R_{I}(\Delta)$	3.1	3.2	3.2	3.3	3.4	3.5	3.5	3.6	3.7	3.8
R ₃ (Δ)	3.36	3.46	3.46	3.53	3.58	3.66	3.64	3,68	3.72	3,79
Δ	190	200	210	220	230-240	250	270	280	290-300	310
$R_1(\Delta)$	3.9	3.9	4.0	4.0	4.1	4.1	4.2	4.2	4.3	4.4
Rs(A)	3.88	3.88	3.97	3.94	4.01	4,03	4.14	4.16	4.25	4.31
Δ	320	330 — 34 0	350	360	370	380 ·	390	400-420	430	440
$R_1(\Delta)$	4.4	4.5	4.5	4.5	4.5	4.6	4.6	4.7	4.75	4.75
R ₃ (Δ)	4.28	4.35	4.38	4.42	4.45	4.54	4.52	4.60	4.58	4.63
Δ	450	460	470—500	510-530	540-550	560—570	580-600	610-620	650	70 0
$R_1(\Delta)$	4.75	4.75	4.8	4.9	4.9	4.9	4.9	Б.О	5.0	5.1
R₃(∆)	4.63	4.62	4.68	4.78	4.76	4.75	4.77	4.88	4.88	4.92
Δ	750	800	850	900	1000					
$R_1(\Delta)$	5,2	5.2	5,2	5,2	5.3					
R₃(∆)	5.0	5,09	б.11	5.14	5.26					

注: R1(Δ)为原使用的62、64型短周期仪器ML起算函数

93

第3期

Ċ

Ç

٩

几种起算函数及地震波随震中距离的衰减

图 3

出了其他几种起算函数曲线。图中 R₃(Δ)和 R₁(Δ)两条 曲 线的 形 态大 体 相同,但在 $\Delta < 180$ km时两曲线差异明显,在 $\Delta < 30$ km 时差异更大,说明在 $\Delta < 30$ km 时, R₃(Δ)对 R₁(Δ)改正量较大,反映了起算函数的区域性。这可 能 是 由于西北地区平均震源深度较 大,形成 震 源 距 和震中距之间的差别,使其近距离内随震中距变化的起算函数出现了较大 的差异,导致了R₁(Δ)<R₃(Δ)。

图 3 中还给出了另一条曲线,即 logAμ=5.26-R₃(Δ)。它代表了地震波的最大振幅 随震中距的变化,反映了西北地区地震波随震中距离的衰减特性。由图可见,当震中距小于 200km时,地震波最大振幅大约以Δ^{-1:3}的速率衰减,大于 200km 时大约以 Δ^{-1.88} 速率衰 减。不同地区的地壳厚度不同,不同类型的地震波的最大振幅随震 中 距 的 变化是很不相同 的,西北(甘、青、宁)地区的地壳厚度平 均 为52±2.5km⁽²⁾,远大于华北、西南地区以 及全国的平均厚度,所以衰减曲线的形态与其他地区有较大差别。

(2)台站校正值S;

由(5)式计算得出的台站校正值列于表 1 中。对不同震中距、不同方位的地震所得 到的 ΔM_{Li} ;进行统计分析表明,当地震次数足够多时,忽略其他因素的影响,台站校正值 S;就是该台站测定的 M_{Li} ;对标准震级 M_{Li} 的系统偏差,其中也包含了起算函数不合理所产 生的微弱影响。一般情况下起算函数对台站各自的震级系统偏差影响不大。从表 1 中可以看 出,台基岩性不同,校正值 S;差别较大。凡 S;绝对值较大的台站,其基岩多属岩性不好的 岩层,如松散沉积层等。

5.误差及其检验

(1)内检验

标准误差是衡量通过某种方法所求得结果的优劣程度的一个统计指标。因此我们把标准 误差的大小作为一个判据。用(2)式和(3)式分别计算了R₃(Δ)和R₁(Δ)两种起算 函数所得的震级的平均标准误差SD(M_L))和震级平均值的标准误差SD(M_L),以资对 比。用R₃(Δ)计算得SD(M_L)为0.302,SD(M_L)为0.109,用R₁(Δ)计算得到 SD(M_L)为0.342,SD(M_L)为0.123。显而易见,新的起算函数优于原使用的起算函数 说明新起算函数更适合于西北(甘、青、宁)地区的实际。如果再加上台站校正值,则SD (M_L)为0.25,SD(M_L)为0.09,两种误差均有所下降,表明进一步提高了近震震级测 定的精度。

(2)外检验

我们选用1987年1-2月发生的27次地震作了外检验,结果表明,当用R₃(Δ)并加台 站校正值后得到SD(M_{Li})为0.28, SD(M_{L})为0.09,用 R₁(Δ)求得 SD(M_{Li})为 0.37, SD(M_{L})为0.12。表明新的起算函数优于原使用的起算函数。

图 4 给出了用R₃(Δ)和R₁(Δ)计算的震级误差的高斯分布,图中还给出了用R₃(Δ) 加台站校正值计算的误差分布曲线。由图可见,曲线的峰值和离散度差别明显。

用 $R_{3}(\Delta)$ 和 $R_{1}(\Delta)$ 求得的震级的平均系统差

dif = $\sum_{i=1}^{Ne}$ (M_{L,i} - M_{L,i}) / Ne = -0.00089,

说明二者之间不存在系统偏差。

用公式 $|x_1 - x_2| < 2\sqrt{\sigma_1^2 + \sigma_1^2}$ (Δ) 加台校正值和 R₁(Δ) 两组数据均

第11卷

^

图 4 用不同起算函数计算的震级的误差分布 (1)R₃(Δ)+S (2)R₃(Δ) (3)R₁(Δ) (3)R₁(Δ) (4)

95

值和标准误差,结果是0.074<0.934,说明用R₃(Δ)加台站校正值与用R₁(Δ)测定的震级之间也没有系统误差。

6.结论与讨论

(1)起算函数的区域性是影响近震震级M_L测定的诸多因素中的主要因素。对于西北地区,用新的起算函数R₃(Δ)求出的震级标准误差比原使用的R₁(Δ)的标准误差要小,内检验和外检验的结果一致,说明R₃(Δ)比R₁(Δ)更适合于西北(甘、青、宁)地区。

(2)使用新的起算函数R₃(△)加台站校正值,提高了西北(甘、青、宁)地区近震 震级M_L的测定精度。

(3)台站校正值与台基岩性条件有关,个别校正值较大的台站其台基多是松散沉积层。

(4)经过起算函数的修正和台基校正后,M_L震级的测定还会存在较大的误差,主要 是受地震波幅射方向性等因素的影响,这是需要进一步探讨的。

(本文1988年4月21日收到)

(国家地震局兰州地震研究所 阎志德 青海省地震局 任铁生 张亚玲)

参考文献

[1]陈培善等, 量规函数、台震方位、台基及不同测量方法对近震震级ML的影响, 地震学报, Vol.5, No.1, 1983.
 [2]张诚等, 甘肃及邻近地区的地壳厚度, 西北地震学报, Vol.1, No.2, 1979.
 [8]张世英等, 测量实践的数据处理, 科学出版社, 1977.

DEVELOPMENT OF DETERMINING NEARBY EARTHQUAKE MAGNITUDE AND CORRECTION OF A GAUGE FUNCTION . IN NORTHWEST CHINA

Yan Zhide

(The Earthquake Research Institute of Lanzhou, SSB) Ren Tiesheng, Zhang Yaling (Seismological Bureau of Qinghai Province)